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Thus, this vast increase in the market value of asset claims is in part the 
indirect result of investors accepting lower compensation for risk. Such 
an increase in market value is too often viewed by market participants 
as structural and permanent. … Any onset of increased investor caution 
elevates risk premiums and, as a consequence, lowers asset values and 
promotes the liquidation of the debt that supported higher asset prices. 
This is the reason that history has not dealt kindly with the aftermath of 
protracted periods of low risk premiums.

—Alan Greenspan (2005)

In his classic study of !nancial crises, Charles P. Kindleberger (1978) provides an 
accounting of historical episodes of manias and panics. Kindleberger’s conjec-

ture, for why bubbles—and their subsequent crashes—arise places primary empha-
sis on abrupt and unanticipated changes in expectations, in part a response to a 
sudden economic event. This explanation is in line with the view of many !nancial 
market observers that during the mid-to-late 1990s US stock prices were exces-
sively high—a “bubble.” The existence and detection of bubbles in asset prices has 
long been of interest to economists and, recently, monetary policymakers (Ben S. 
Bernanke 2002). Despite popular agreement that asset prices are susceptible to large 
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Learning about Risk and Return: A Simple Model  
of Bubbles and Crashes†

By William A. Branch and George W. Evans*

This paper demonstrates that an asset pricing model with least-
squares learning can lead to bubbles and crashes as endogenous 
responses to the fundamentals driving asset prices. When agents are 
risk-averse they need to make forecasts of the conditional variance of 
a stock’s return. Recursive updating of both the conditional variance 
and the expected return implies several mechanisms through which 
learning impacts stock prices. Extended periods of excess volatil-
ity, bubbles, and crashes arise with a frequency that depends on the 
extent to which past data is discounted. A central role is played by 
changes over time in agents’ estimates of risk. (JEL D81, D83, E32, 
G01, G12)
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run-ups in prices above the value warranted by observed fundamentals, in the eco-
nomics literature there is no such consensus.

In this paper, we consider the issue of recurrent bubbles and crashes and demon-
strate that a model based on econometric learning can generate bubbles and crashes as 
endogenous responses to fundamental shocks. We replace rational expectations (RE) 
in a simple linear asset pricing model with a perceived law of motion that has a reduced 
form consistent with RE, and the parameters of which are estimated and updated using 
recursive least squares. We extend the conventional model to include a motive for 
agents to estimate risk—measured as the conditional variance of net stock returns. We 
show that the dynamic properties of the economy are altered in surprising and interest-
ing ways once agents must account for, and adaptively learn, the riskiness of stocks.

Figure 1 previews our results by plotting stock prices generated from our simple 
asset pricing model in which rational expectations are replaced by an econometric 
forecasting rule. For the illustrative model parameterization adopted in subsequent 
sections, it turns out that in a fundamentals-based rational expectations equilibrium 
(REE) the mean stock price is about 8.7, and along an equilibrium path price is sim-
ply a constant plus white noise, with a standard deviation of about 0.7. Under learn-
ing, the dynamics can undergo an abrupt change leading to the recurrent bubbles and 
crashes illustrated in Figure 1.1 Rational expectations prices lie between 7.3 and 10.1 
(± two standard deviations) about 95 percent of the time and between 6.6 and 10.8 
(± three standard deviations) over 99.7 percent of the time, whereas there are frequent 

1 The parameterization is that used for Figure 12.
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Figure 1. Simulated Stock Price Dynamics
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departures from these ranges in the learning environment we analyze. In the Figure 1 
simulation, prices are in the 6.6 to 10.8 range less than 40 percent of the time.

To establish our results, we consider a simple asset pricing model in which the 
stock price today depends on expected cum dividend price next period and negatively 
on share supply, meant to proxy asset 4oat. Share supply and dividends are both 
assumed to follow exogenous independently and identically distributed processes. 
We assume agents are risk-averse so that they seek to forecast both the expected 
net return tomorrow and the conditional variance of excess returns. It turns out that 
by requiring agents to also estimate the conditional variance, the global learning 
dynamics of our model are dramatically different.

The analysis in this paper identi!es several channels through which agents’ adaptive 
learning about risk and return affects stock prices. Occasional shocks to fundamentals 
can lead agents to adjust their estimates for risk and expected return; combined, these 
two forces cause stock prices to deviate from their fundamental values. For exam-
ple, a sustained period of small shocks to prices can lead to a downward revision in 
risk estimates that raises stock prices. More generally, various speci!c sequences of 
shocks, reinforced by the feedback from adaptive beliefs, introduce serial correlation 
that would not otherwise exist, and can lead agents’ forecasting rule to track this serial 
correlation via a random walk forecasting model. Random walk beliefs can be approx-
imately self-ful!lling and various scenarios for stock prices are possible, including 
bubbles and crashes. Changing estimates of risk are also useful in explaining how 
explosive bubbles can crash suddenly. If stock prices follow a bubble path, estimates 
of risk will tend to increase over time. Eventually, the increased risk estimates can lead 
to decreased demand for the risky asset and drops in the stock price, at which point 
demand collapses and price crashes well below its fundamental value.

This paper proceeds as follows. Section I presents the model. Section II states the 
basic stability results and Section III studies global dynamics. Section IV presents 
the numerical results illustrating the recurrent bubbles and crashes. Section V dis-
cusses our results in the context of the literature, and Section VI concludes.

I. Model

We employ a simple mean-variance linear asset pricing model, similar to J. 
Bradford De Long et al. (1990).2 There is one risky asset that yields a dividend 
stream {  y t } and trades at the price  p t  , net of dividends. There is also a risk-free asset 
that pays the rate of return R =  β  −1  > 1, where β is the discount factor. In this 
environment, demand for the risky asset is

   z dt  =   
 E  t  * (  p t+1  +  y t+1 ) −  β  −1  p t    __  

a σ  t  2    ,

where  E  t  * (  p t+1  +  y t+1 ) denotes the conditional expectation of  p t+1  +  y t+1  based on 
the agent’s subjective probability distribution, and  σ  t  2  denotes the agents conditional 

2 See the Appendix for details of the setup.
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variance of excess returns  p t+1  +  y t+1  − R p t . The equilibrium price  p t  is given by  
z dt  =  z st  , where  z st  is the (random) supply of the risky asset at time t.

It follows that

(1)   p t  = β E  t  * (  p t+1  +  y t+1 ) − βa σ  t  2  z st  .

For a = 0, equation (1) reduces to the standard risk-neutral asset-pricing formula, 
which can also be derived from the Lucas asset pricing model with risk neutrality. 
The Lucas model is an endowment economy in which consumers choose sequences 
of consumption, equity and bond holdings, to maximize the expected present value 
of lifetime utility. If agents are risk-neutral and !nancial markets complete then 
βR = 1, where β is the discount rate.3

When a > 0, equation (1) can be derived from an overlapping generations model 
along the lines of De Long et al. (1990). As we note in the Appendix, this leads 
to mean-variance preferences when agents have constant absolute risk aversion 
(CARA) utility and believe that returns are normally distributed. Mean-variance 
preferences are a frequently employed approach to tractably modeling limited risk 
tolerance (downward sloping asset demand) and give rise to a mean-variance maxi-
mizing setting in which agents optimize their portfolio by maximizing risk-adjusted 
expected wealth. See, for example, Volker Bohm and Carl Chiarella (2005) and 
Jonathan Lewellen and Jay Shanken (2002). The novelty of our approach is that 
we assume agents estimate the value of this risk. Risk aversion implies that agents’ 
welfare declines with the conditional variance of returns,  σ  t  2 . Agents’ concern with 
risk makes  σ  t  2  an equilibrium object of the model, and this is a key ingredient to our 
!nding of recurrent bubbles and crashes. In the learning section below, time-varying 
estimates of  σ  t  2  will sometimes arrest explosive bubbles and can lead to crashes.

The second term in (1) captures two key features to our analysis: the outside sup-
ply of shares of the risky asset follows a stochastic process  z st  ; and the presence of 
risk-averse agents (a > 0) implies that asset price also depends on agents’ percep-
tions of the conditional variance of excess returns  σ  t  2  = Va r  t  * (  p t+1  +  y t+1  − R p t )  = Va r  t  * (  p t+1  +  y t+1 ). Having price depend explicitly on  z st  implies that price 
depends on agents’ perceived risk. In subsequent sections, we demonstrate that the 
nature of stock price dynamics depends, in part, on how perceived risk adjusts to the 
fundamental shocks to dividends and outside share supply. A stochastic process for 
share supply is meant to proxy for variations in the availability of publicly tradable 
shares (i.e., asset 4oat). Variations in asset 4oat can affect stock price, an issue of 
increasing empirical importance in the !nancial economics literature (see Eli Ofek 
and Matthew Richardson 2003; John H. Cochrane 2005; and Branch and Evans 
2010), as many IPOs have a large share of their offerings “locked up” by insiders 
and, therefore, are not publicly tradable. Here we motivate the presence of asset 
share supply by appealing to this literature and noting that short sales constraints 
in markets (such as IPO lock up restrictions) can give rise to an important role 
to supply variation in asset pricing. The Appendix presents a stylized overlapping 

3 Of course, below we motivate the model as not being a complete markets model, and so we might expect  βR ≠ 1. Our analysis does not hinge on this restriction.
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generations model, where variation in per capita share supply can arise from sto-
chastic variation in the population of young agents. Equation (1) makes it clear that 
with risk-neutral agents share supply does not have an effect on price.

We assume that the exogenous process for dividends is

   y t  =  y 0  +  u t  ,
with  y 0  > 0 and E u t  = 0. Share supply is assumed to follow a multiplicative process 
of the form
   z st  = {   

    min       ( s 0  , Φ p t )} ⋅  V  t  ,
where  u t  ,  V  t  are uncorrelated independently and identically distributed shocks 
with E V  t  = 1, and  s 0  > 0. Here, Φ =  s 0 /( _ p  ξ), where  

_ p   is the mean stock price 
in a fundamentals-based REE, and 0 < ξ < 1 is a fairly small proportion. In our 
numerical illustrations we set ξ = 0.1, which implies that share supply is exogenous 
except when price falls below 10 percent of its fundamentals value. The endogeneity 
of share supply at low prices is meant to capture asset 4oat drying up in !nancial 
markets that perform poorly. This ensures that price remains nonnegative, thereby 
providing a price 4oor in the event of a crash in stock prices.

It is well-known that in asset pricing models of this form there are (broadly) 
two classes of rational expectations solutions: the “fundamentals” solution and a 
“bubbles” class of solutions. A REE is a stochastic process {  p t } that solves (1) with  
E  *  = E. The fundamentals-based REE  p  t  f  can be found by assuming  σ  t  2  =  σ  2  and 
iterating (1) forward to give  p t  =  ∑ j=1  ∞      β  j     E t   y t+ j − β  ∑ j=0  ∞       β  j  a σ  2  E t   z st+j  . There is 
additionally a class of bubbles REE, which are given by adding to the fundamentals 
solution a “rational bubble” term  β  −t ηt , where ηt is an arbitrary martingale, i.e.,  
E t   η t+1  =  η t  . For 0 < β < 1 the bubbles REE is explosive. To generate empirically 
plausible time-series it is often assumed that  η t  follows a Markov process that peri-
odically collapses the bubble (Olivier Jean Blanchard 1979; Blanchard and Mark W. 
Watson 1982; Evans 1991).

Provided the support of the supply  z st  is not too large, the model will have REE in 
which share supply is always exogenous. Letting  V  t  = 1 +  v t / s 0  , i.e.,  s 0  V  t  =  s 0  +  
v t  , where  v t  is an independently and identically distributed mean-zero disturbance, 
and restricting attention to solutions with  σ  t  2  =  σ  2 , the model becomes

(2)   p t  = β E  t  *  p t+1  + β(  y 0  − a σ  2  s 0 ) − βa σ  2  v t  .
The fundamentals solution takes the form

   p t  = β(1 − β ) −1 ( y 0  − a σ  2  s 0 ) − βa σ  2  v t  ,
and it can be shown that the bubbles solutions have the alternative representation

   p t  = a σ  2  s 0  −  y 0  +  β  −1  p t−1  − a σ  2  v t−1  +  ξ t  ,
where  ξ t  is an arbitrary martingale difference sequence, i.e.,  E t   ξ t+1  = 0.
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Our aim in this paper is to provide a model that yields the periodic bursts and 
collapses of bubbles as was the goal in Blanchard and Watson (1982). However, we 
assume that agents attempt to learn, in real-time, about the underlying stochastic 
process followed by the stock price, in particular about the conditional mean and 
variance of the excess rate of return. Because the model is self-referential, agents’ 
learning can produce, as endogenous reactions to the intrinsic fundamental shocks, 
periodic bubbles and crashes.

To this end, we depart from rational expectations by following, e.g., Albert 
Marcet and Thomas J. Sargent (1989b) and Evans and Seppo Honkapohja (2001), 
and assume that agents form expectations based on a perceived law of motion, i.e., 
a forecasting model that allows for both the fundamentals and bubbles REE. With 
a forecasting rule in hand, agents forecast next period’s stock price and expected 
returns, and use these expectations to form their demands for the risky asset. The 
equilibrium stock price will be the one that clears the market. Speci!cally, we 
assume that at the beginning of period t agents forecast  p t+1  based on the following 
perceived law of motion:

(3)   p t  = k + c p t−1  +  ε t  ,
where  ε t  is an unobserved white-noise disturbance. Under learning k and c are 
parameters estimated from past data. With the perceived law of motion (3), subjec-
tive conditional expectations are

(4)   E  t  *  p t+1  = k(1 + c) +  c  2   p t−1  .

For convenience we are adopting the timing assumption that no contemporaneous 
variables, including  z st  , are observable to agents at t when they make their forecasts.4 
To ensure stock prices remain nonnegative, we also impose that k(1 + c) ≥ −  y 0  .

The demand for the risky asset also depends on  σ  2 , the subjective conditional 
variance of excess returns, which is also estimated from past data. Inserting these 
beliefs into (1), using, again,  s 0  V  t  =  s 0  +  v t  , and allowing for the possibility of 
endogenous share supply yields the actual law(s) of motion

(5)  pt =  β( y 0  + k(1 + c) − a σ  2  s 0 ) + β  c  2  p t−1  − β a σ  2  v t  , if  s 0  ≤ Φ p t 

(6)  pt =    β(k(1 + c) +  y 0 )  __  
1 + β a σ  2 Φ(1 +  v t )   +   

β  c  2 
 __  

1 + β a σ  2 Φ(1 +  v t )    p t−1 , if  s 0  > Φ p t  .

Thus asset prices  p t  are determined by (5)–(6), given agents’ estimates of (c, k, σ2) 
based on past data. Under real-time learning the parameter estimates are updated 
each period, using the most recent data point, as described in Section IIB. Apart 
from the details of the adaptive learning rules, this completes the description of 

4 Thus  E  t  *  p t+1  =  E  t  * (k + c(k + c p t−1  +  ε t ) +  ε t+1 ) = k(1 + c) +  c  2   p t−1 . The stability properties of the REE 
solutions under learning does not hinge on the details of the information assumption.
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how the path of asset prices under learning is determined. The !rst issue we study is 
whether under learning there can be convergence to REE over time.

II. Stability under Learning

In this section, we turn to an examination of the stability of the fundamentals and 
bubbles REE under adaptive learning. It is revealing to do this in two stages. First 
we take  σ  2  as given and study the (local) stability under learning of the parameters 
in the agents’ forecasting model. We then show how  σ  2  is pinned down in equilib-
rium, specify a recursive algorithm for estimating the conditional variance in real-
time, and study the local stability properties of the REE with endogenous  σ  2 .

A. Expectational Stability

To examine local stability of the REE under learning, we consider the mapping 
from the perceived law of motion (3) to the implied actual law of motion (5)–(6). 
In this section, we treat perceived risk  σ  2  as a given parameter. If beliefs are suf!-
ciently close to a REE, and provided  p t−1  is not too low, then asset share supply will 
be exogenous and the actual law of motion can be rewritten simply as

(7)  pt = T(k, c)(1,   p t−1 )′ − β a σ  2  v t  ,
where

(8)  T(k, c) = (β( y 0  + k(1 + c) − a σ  2  s 0 ), β  c  2 )
de!nes a map from the perceived to the actual law of motion. There are two !xed 
points of the T-map (8), (β( y 0  − a σ  2  s 0 )/(1 − β ), 0) and (a σ  2  s 0  −  y 0 ,  β  −1 ), which 
correspond to the fundamentals and bubbles REE.

The T-map (8) can be interpreted as follows. If agents had perceived law of 
motion given by (3), with parameters (k, c) !xed at possibly non-RE values, and if 
agents maintained these !xed parameters over time, then their forecast rule would 
be given by (4). With exogenous share supply the stochastic process followed by  p t  
would take the same functional form as (3), but with parameters T(k, c) instead of 
(k, c). Not surprisingly, REE are !xed points of the T-map, since a REE occurs when 
perceptions and outcomes align.

Under real-time learning the parameters (k, c) are not !xed, and instead are 
adjusted gradually over time using least-squares to update their values in response to 
the evolving data. The econometric learning literature, e.g., Evans and Honkapohja 
(2001), has shown that the T-map can be used to compute a simple stability condi-
tion, known as E-stability, which governs whether or not RE parameters are locally 
stable under learning, and that the differential equation, used to de!ne E-stability, 
also provides information on the global dynamics under learning.5

5 When analyzing the global dynamics below, we allow for endogenous supply.
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Formally, the E-stability principle states that locally stable rest points of the ordi-
nary differential equation

(9)    
d(k, c)′ _ 

dτ   = (T(k, c) − (k, c))′
will be attainable under least squares and closely related learning algorithms.6 That 
the E-stability principle governs stability under learning is intuitive, because under 
(9) the parameters (k, c) are gradually adjusted in the direction of the actual law  
of motion parameters generating the data given these perceptions. Local stability of 
(9) at a REE thus answers the question of whether under such adjustment a small 
displacement of (k, c) would return to the REE. It is straightforward to apply the 
E-stability principle to assess the local stability under learning of the REE in our 
set-up. In fact, Evans and Honkapohja (2001) show, in a closely related model,7 that 
with 0 < β < 1: (i) the fundamentals REE (β( y 0  − a σ  2  s 0 )/(1 − β), 0) is E-stable, 
and hence stable under learning, and (ii) the bubbles REE (a σ  2  s 0  −  y 0  ,  β  −1 ) is not 
E-stable. That the bubbles REE is not E-stable has been another cited objection 
to rational bubbles. Since a slight deviation from the bubbles path would lead the 
process under learning to diverge from the bubbles REE, observing such equilibria 
seems unlikely.

B. Stability with Learning about Risk

In the previous section, we examined the stability under learning, while taking 
as given the agents perception of risk  σ  2 . In a REE,  σ  2  is an equilibrium object, and 
it is also natural, and we would argue crucial, to extend the analysis of learning to 
include learning about the degree of risk.

Recalling that  σ  2  = Va r t (  p t+1  +  y t+1  −  β  −1  p t ), it follows that in a REE

   σ  2  =  E t  ( p t+1  −  E t   p t+1  +  y t+1  −  E t   y t+1 ) 2 .
In the case of the fundamentals REE,

(10)  σ2 =  E t ( − aβ σ  2  v t+1  +  u t+1 ) 2 .
The right-hand side of this equation can be viewed as giving, for any speci!ed per-
ceived value of  σ  2 , the implied actual value of  σ  2 , and solutions to (10) deliver the 
REE values for the fundamentals REE:

   σ  2  =   
1 ±  √ __

  1 − 4 a 2  β  2  σ  v  2  σ  u  2   
  __  

2 a 2  β  2  σ  v  2 
   .

6 Here τ denotes notional time, which, however, can be linked to real time t as discussed below.
7 For the case with !xed and known  σ  2 , the formal structure of the model under learning is also similar to the 

hyperin4ation model of Marcet and Sargent (1989a).
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There are two positive solutions, but we will see that it is the smaller root  σ  L  2
   that is 

stable under learning. For the bubbles REE, straightforward calculations show that  
σ  2  =  σ  u  2  +  σ  ξ  2  . We remark that in the fundamentals REE,  p t  is affected directly by 
the supply shock but not the dividend shock. However, the variances of both shocks 
affect the distribution of  p t  via  σ  2 .

We turn now to a speci!cation of the learning algorithm. Agents are assumed to 
use recursive least squares to form parameter estimates of (k, c), and to use a simple 
stochastic recursive algorithm, given below, to estimate  σ  2 . De!ne  θ t  = ( k t ,  c t )′ to be 
the time t estimates of (k, c), and let  σ  t  2  be the time t estimate of  σ  2 . Assuming that at 
time t agents use parameters estimated using data through time t − 1, and that their 
forecasts are conditioned on variables dated t − 1 or earlier, real-time expectations 
are given by

   E  t  *  p t+1  =  k t−1 (1 +  c t−1 ) +  c  t−1  2
    p t−1 .

Under learning, the price process is

(11)   p t  = β( y 0  +  k t−1 (1 +  c t−1 )) + β  c  t−1  2
    p t−1  − β a σ  t−1  2

    z st  ,

where  z st  =  s 0  +  v t  if supply is exogenous. Allowing for endogenous supply (11) 
can be rewritten as (5)–(6), with k, c,  σ  2  replaced by  k t−1 ,  c t−1 ,  σ  t−1  2

  .
Letting  X t  = (1,  p t )′, the real-time learning algorithm can be written as

(12)  θt =   θ t−1  +  γ 1, t   S  t−1   −1
   X t−1 ( p t  −  θ  t−1  ′    X t−1 )

(13)  St =   S t−1  +  γ 1, t+1 ( X t   X  t  ′  −  S t−1 )
(14)   σ  t  2  =   σ  t−1  2

   +  γ 2, t ((  p t  −  θ  t−1  ′   X t−1  +  u t ) 2  −  σ  t−1  2
  ).

The !rst two equations in (12)–(14) are the updating equations for recursive least 
squares. Here,  S t  is an estimate of E X t   X  t  ′  , the second moment matrix of the regres-
sors, which is needed for least-squares updating. Equation (14) is a recursive algo-
rithm for estimating the conditional variance of net returns.8

For the stability results in this section, we assume the “gains”  γ 1, t  ,  γ 2, t  are set to  
γ 1, t  =  γ 2, t  =  t −1  as in standard least squares. For the results on mean dynamics, 
given in the next section, and for the numerical simulations, we instead assume 
constant gains and allow  γ 1, t  =  γ 1  ≠  γ 2  =  γ 2, t  . With constant-gain learning, the 
recursive algorithm becomes a form of discounted least squares. Decreasing gains 
allow for the possibility of full convergence to REE, and are thus convenient for 
studying local stability questions. Constant gains are appropriate if agents want to 
allow for the possibility of structural change of an unknown form, and also have the 
advantage that the system is time-invariant with an ergodic distribution that can be 
studied. Under decreasing gains, equation (14) in effect estimates the conditional 

8 Agents’ period t estimate of the conditional variance of excess returns is now denoted  σ  t−1  2
   because it is based 

on data through period t − 1.
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variance by the sample mean of squared excess returns, as would be appropriate in 
the fundamentals REE, while with a constant gain 0 <  γ 2  < 1, the algorithm can 
track drifting volatilities of an unspeci!ed form. More general formulations could 
be considered in which the conditional variance was assumed by agents to depend 
on observables, in which case the algorithm for learning about second moments 
would look more like the algorithm for learning about !rst moments.

The !rst, and most basic, stability question is whether the E-stability results for 
the fundamentals and bubbles REE, given in the preceding section, carry over to 
the current setting in which estimates of risk, as well as the coef!cients of the price 
process, are updated in real time. Evans and Honkapohja (2001) provide conditions 
that ensure convergence of recursive systems like (12)–(14). These conditions draw 
on convergence theorems for stochastic recursive algorithms. For now, we assume 
that initial beliefs lie in the region in which share supply is exogenous, in which case 
the price process under learning is

(15)   p t  = β( y 0  − a s 0  +  k t−1 (1 +  c t−1 )) + β  c  t−1  2
    p t−1  − β a σ  t−1  2

   v t  .
Later we illustrate how weak convergence results are impacted by (possibly) endog-
enous supply.

To study the stability under learning of a REE, for the case of decreasing gain, 
the approach is to use a continuous time approximation to (12)–(15), the !t of 
which improves as time gets large. De!ning  ϕ t  = ( θ t  , vec( S t ),  σ  t  2 )′, one can write 
(12)–(14) as

   ϕ t  =  ϕ t−1  +  t −1  (t,  ϕ t−1 ,    
_ X  t ),

where    
_ X   t  ′   = (1,  p t  ,  p t−1 ,  u t ,  v t )′. Results from stochastic approximation theory show 

that asymptotically the dynamics of (12)–(15) are governed by the associated ODE 
(ordinary differential equation)
(16)    

dϕ _ 
dτ   =  h(ϕ), where

  h(ϕ) =        lim    
t→∞ E (t, ϕ,    

_ X  t (ϕ)).
Here, ϕ = (θ, vec(S),  σ  2 )′ and τ is “notional” time. The explicit computation of h(ϕ) 
is given in the Appendix, and details of the technique are described in Marcet and 
Sargent (1989b) and Evans and Honkapohja (2001). Local stability of this ODE gov-
erns the local stability of the REE under (12)–(15). In the online Appendix, we show:

PROPOSITION 1: Consider the model (1) with exogenous share supply. Under the 
adaptive learning algorithm (12)–(15) with gains  γ 1, t  =  γ 2, t  =  t −1 :

 (i) The fundamentals REE with  σ  2  =  σ  L  2
   is locally stable under learning.

 (ii) The bubbles REE is unstable under learning.
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There are various interpretations in this setting for the phrase “locally stable 
under learning,” as discussed at length in Evans and Honkapohja (1998). For 
example, Marcet and Sargent (1989b) point out that probability one convergence 
obtains provided the stochastic recursive algorithm is augmented with a “projec-
tion facility” that restricts parameter estimates to a suitable compact set around the 
equilibrium of interest. The use of projection facilities has been criticized by Jean-
Michel Grandmont (1998) and clearly its use rules out some potentially interest-
ing global dynamics. As we will now see, with constant-gain learning, bubble-like 
global dynamics can periodically emerge as temporary large deviations from the 
fundamentals REE. Furthermore the increases in perceived risk along these bubble 
paths eventually act to return the price process to a neighborhood of the fundamen-
tals REE.

We now turn to the analysis of the global learning dynamics in our model.

III. Global Properties

The results above demonstrate that the fundamentals REE is locally stable under 
learning, while bubbles REE are not. Thus, the onset of recurring bubbles and crashes 
will arise from the global dynamic properties of the model under learning. As shown 
below in Proposition 2, the ODE (16) also provides insight on global dynamics under 
both decreasing and constant gain learning. In particular, the ODE (16) describes 
the mean dynamics of the parameters under learning from given initial values.

This section provides numerical examples of the global learning dynamics in 
order to illustrate the possible theoretical outcomes. Numerical parameter choices 
are made in order to best demonstrate the possible dynamics rather than to pro-
vide an empirically meaningful calibration. This section is organized as follows. 
In Section IIIA, we !rst show that, even if expectations start at the fundamentals 
REE, under constant gain learning the estimates (kt, ct,  σ  t  

2  ) will follow a stochastic 
process that can be characterized. In particular their variance around REE values is 
scaled by the gain parameter, i.e., by the sensitivity of agents’ beliefs to recent data. 
Second, we will show that if these belief parameters wander far enough away from 
the fundamentals REE, the path back to the REE, governed by the mean dynamics, 
may include a period in which stock prices are believed to follow a random walk. In 
Section IIIB, we show that such periods are likely to be sustained because random 
walk beliefs are approximately self-con!rming. Finally, Section IIIC considers 
more speci!cally which “escape paths” are most likely to drive the system large 
distances away from the fundamentals REE, and to generate random walk beliefs.

Figure 2 illustrates one key part of the intuition that can be understood in terms 
of the E-stability results of Section IIA. Consider either REE, and !x  σ  2  and S at 
the REE values. Examination of the form of the ODE (16), given in the Appendix, 
shows that the dynamics of θ′ = (k, c) are then given simply by the E-stability dif-
ferential equation (9). In addition, from (8) it can be seen that the c component of 
the T-map is  T  c  = β  c  2 , so that c evolves independently of k. These observations 
imply that with  σ  2 , S !xed at REE values, the mean dynamics of c are autonomous 
and given by dc/dτ =  T  c (c) − c. The !gure demonstrates how learning  dynamics 
adjust perceptions about the slope parameter c (horizontal axis) in response to 
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 outcomes (vertical axis). In a REE,  T  c  intersects the 45 degree line. There are clearly 
two REE: the fundamentals at c = 0 and the bubbles at c = 1/β. The arrows in the 
!gure show the direction of adaptation of c. For initial values c > 1/β, we have   
T  c (c) − c > 0, so that c tends to be revised upward, and the ensuing estimates c will 
tend to explode. On the other hand, for initial c < 1/β, we have  T  c (c) − c < 0, so 
that c is revised downward, with convergence to the fundamentals REE value c = 0.

Although trajectories originating in [0, 1/β) will eventually settle down at the fun-
damentals REE, the global dynamics along a convergent path could still be interest-
ing. In particular, away from the fundamentals REE, the dynamics introduce serial 
correlation into  p t  . This serial correlation may be self-reinforcing leading agents to 
(temporarily) believe that c > 0, and, in some cases, paths will arise in which the 
agents believe that the price is close to random walk behavior. We will later see that 
such paths are associated with bubbles and crashes.

Additional insight can be obtained by studying the global dynamics of the ODE 
(16), the solutions to which can be shown to provide the “mean dynamics” to real-
time learning under both decreasing and constant gain. Anticipating the real-time 
simulations of Section IV, we use constant gains  γ 1, t  =  γ 1  and  γ 2, t  =  γ 2  , allowing 
also for  γ 1  ≠  γ 2  . As noted above, constant gains are better able to track the stochastic 
process generating the data when there is structural change taking an unknown form. 
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Constant gain learning has been widely used in the learning literature as discussed 
further in Section V. One implication is that instead of converging asymptotically to a 
REE, estimates can converge to a stationary process around a stable REE.

We begin with formal results, for the case of exogenous supply, on the ODE 
approximation for the case of small constant gains. Details of the case where 
share supply may become endogenous are in the online Appendix. Fixing the ratio   
γ 2 / γ 1  at some value, we use  ϕ  t  γ  to denote the value of  ϕ t  = ( θ t  , vec( S t ),  σ  t  2 )′ under the 
process (12)–(14) when  γ 1  is set at some (small) value  γ 1  = γ. In order to make a 
comparison between solutions to the continuous time ODE and to the discrete time 
recursive algorithm, we need to de!ne a corresponding continuous time sequence 
for  ϕ  t  γ , which we denote as  ϕ γ (t). To construct  ϕ γ (τ), we set  τ  t  γ  = tγ , and de!ne   
ϕ γ (τ) =  ϕ  t  γ  if  τ  t  γ  ≤ τ <  τ  t+1  γ  . The following proposition establishes the mean 
dynamics result in a neighborhood of the fundamentals REE and also provides 
information on the stochastic distribution.

PROPOSITION 2: Assume exogenous share supply. For any  ϕ 0  within a suitable 
neighborhood of the fundamentals REE, de!ne   ̃  ϕ (τ,  ϕ 0 ) as the solution to the ODE 
dϕ/dτ = h(ϕ), with initial condition  ϕ 0 . Consider the random variable, indexed by 
the constant gain γ,  U  γ (τ) =  γ −1/2 ( ϕ γ (τ) −   ̃  ϕ (τ, ϕ 0 )). As γ → 0,  U  γ (τ), 0 ≤ τ ≤ T, 
converges weakly to a zero mean random variable.

The proof is contained in the online Appendix. We remark that the “neighbor-
hood” of validity of this proposition need not be small and, as shown in the online 
Appendix, can include a wide range of values for ϕ. (The neighborhood must 
also include the trajectory   ̃  ϕ (τ,  ϕ 0 ) for 0 ≤ τ ≤ T   ).9 This result establishes that, 
over !nite periods of time, the solution of the ODE dϕ/dτ = h(ϕ), where τ ≈ γ t, 
approximates the expected path, under real-time learning with a small constant gain, 
from given initial conditions. Thus, the solution    ̃  ϕ (τ,  ϕ 0 ) to (16) gives the “mean 
dynamics” under learning. It is important to emphasize that the convergence result 
of Proposition 2 is across sequences of  ϕ t , for alternative gains γ → 0, and not along 
a particular realization.10

Section IIIA demonstrates that if beliefs are displaced away from the REE, the 
transitional path may include agents temporarily believing stock prices follow a ran-
dom walk. Section IIIB further shows that such random walk beliefs are almost self-
ful!lling. One way to try to understand how beliefs of this form might arise is the 
approach of In-Koo Cho, Williams, and Sargent (2002) (CWS), who use the notion 
of “escape dynamics” as a way of characterizing the “most likely unlikely” shock 
process that will lead a model away from a REE. CWS (2002) show that an ODE, 
similar to the mean dynamics ODE, governs the path for beliefs that move away 
from a neighborhood of the REE. This ODE takes the form dϕ/dτ = h(ϕ) +   ̇  v , 
where   ̇  v  = v(ϕ). CWS (2002) interpret   ̇  v  as arising from a  continuous time 

9 Similar results can be expected to hold in the case where share supply may become endogenous, but veri!ca-
tion of the technical conditions in this case are dif!cult. Instead, we use an approximation and then present numeri-
cal results.

10 See Noah Williams (2009) and Bruce McGough (2006) for further discussion.
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 approximation to the constant gain learning algorithm under a “most likely unlikely” 
distribution for the shock process. The intuition behind their analysis is to look for a 
sequence of shocks that moves the system out of a neighborhood of the REE via the 
shortest, or least costly, route. To give insight into the types of escape dynamics pos-
sible in this model, in Section IIIC, we simulate the model under various “unlikely” 
sequences of shocks.

A. Mean Dynamics

Constant gain learning allows estimates to be more alert to structural change, but 
it also makes agents’ beliefs more responsive to shocks. Consequently random divi-
dend and supply shocks continue to displace the system from the fundamentals RE 
solution. The resulting displacements trigger mean dynamics that can sometimes 
temporarily move further away from the fundamentals REE. Section IIIC studies 
what types of shocks might provide the trigger to move beliefs far away from their 
REE values. How responsive agents’ beliefs are to these shocks depends on the 
constant-gain parameters. For suf!ciently small gains the economy will, with high 
probability, remain in a neighborhood of the REE, as indicated by Proposition 2. 
However, for larger gains interesting global dynamics are more likely to arise.

To illustrate this reasoning Figure 3 plots the 95 percent and 50 percent con!-
dence ellipses for (k, c) around the fundamentals REE assuming relative constant 
gains  γ 2 / γ 1  = 2, for reasons which will become apparent below. To compute this 
!gure we follow Evans and Honkapohja (2001, chapter 7) who show that asymp-
totically, under constant-gain learning, the parameter estimates are approximately 
normally distributed around the REE value, with variance proportional to the gain.11 
This !gure was generated by assuming the following baseline parameterization: 
β = 0.95, a = 0.75,   σ  u  2  = 0.9,  σ  ν  2  = 0.5,  y 0  = 1.5,   s 0  = 1. Figure 3 illustrates that 
the con!dence ellipses around the fundamentals REE have a decreasing principal 
axis, suggesting that one can expect many trajectories moving in the direction of this 
axis. Notice that the ellipses are pointed in the direction of a random walk without 
drift, with larger c associated with smaller k along the principal axis. The relative 
size of these ellipses depends on the sizes of the constant gain. Figure 3 is our !rst 
indication that, under constant-gain learning, estimates of agents will occasionally 
evolve toward random walk beliefs, with a frequency that is higher for larger gains.

For the key parameters (k, c,  σ  2 ), the con!dence ellipsoid consists of the (k, c) 
ellipse in Figure 3 and a con!dence region for the risk aversion parameter  σ  2 , which 
is a small interval around the fundamentals REE value.12 One can think of constant-
gain learning dynamics as re-initializing the mean dynamics. Figure 4 illustrates rep-
resentative mean dynamics for an initial value of c > 0, with a corresponding k on 
the principal axis, and with initial  σ  2  somewhat below its stable REE value.13 Again, 
we set  γ 2 / γ 1  = 2. Setting  σ  2  below and c above their REE values  corresponds to a 

11 See the online Appendix for further details. For illustrative purposes, in Figure 3, we set γ1 = 0.05 and γ2 = 0.10.
12 In the asymptotic distribution,  σ  2  is uncorrelated with k and c.
13 The working paper version of this paper contains plots of the mean dynamics for other starting points.



VOL. 3 NO. 3 173BRANCH AND EVANS: LEARNING ABOUT RISK AND RETURN

decrease in perceived risk and to an increase in perceived serial correlation in price, 
so that initially mean prices are above the fundamental REE value. The !gure plots 
the mean price along the learning path, the belief parameters c, k, and the perceived 
risk estimate  σ  2 .

The fundamentals REE is seen to be a stable rest point for the mean dynamics, 
in line with Proposition 1. However, in addition, the transition path for the mean 
dynamics, in particular the behavior of the autoregressive parameter c, is very inter-
esting. At !rst the estimate of c moves toward the fundamentals REE, but then it 
reverses course and increases to a value of c = 1, where it remains for a period before 
eventually converging to c = 0. This evolution is accompanied by an increase in  σ  2 , 
including a sharp spike, before returning to its fundamental value. Note that k ≈ 0 
during the period during which c ≈ 1. Thus, the mean dynamics show agents coming 
to believe that stock prices approximately follow a random walk. Along the path, the 
mean price implied by k, c,  σ  2  begins well above the fundamentals with c > 0 and  
σ  2  below its REE value, but then collapses along with the temporary increase in  σ  2 .

Through numerical explorations, we found that greater sensitivity in updating 
estimates of  σ  2  was more likely to trigger random walk beliefs in the mean dynamics. 
For this reason, in the real-time dynamics below, we choose values of  γ 2  >  γ 1 . Is 
this choice empirically realistic? We believe so. Robert C. Merton (1980) argues 
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that under appropriate assumptions the instantaneous conditional variance of the 
excess return in a continuous time framework can be estimated much more precisely 
than can the conditional mean. However, what is relevant within our model is the 
conditional variance over the investment horizon of the representative agent. The 
strong volatility clustering observed empirically in excess returns suggests the need 
for a relatively large gain  γ 2  to track the time variations in conditional variance.

Revisions of risk estimates together with random walk beliefs play a key role in 
the learning dynamics. In a perceived low-risk environment traders will act on these 
beliefs and asset prices will be driven up. Similarly high risk estimates tend to drive 
asset prices down. In either case the resulting price dynamics push estimates of the 
price process toward a random walk. In essence, agents come to believe that recent 
changes in price are permanent shifts and not mean-reverting 4uctuations. The ran-
dom walk beliefs are nearly self-ful!lling, as we will see next. Furthermore, random 
walk beliefs, when combined with variation over time in risk estimates, tend to gen-
erate bubbles and crashes, as we will see in the simulations in Section IV. Besides 
generating departures from the fundamentals REE, another role played by risk is to 
crash bubbles; along an explosive price path, risk estimates can increase and eventu-
ally cause price to collapse. The relative gain  γ 2 / γ 1  is important for ensuring that 
bubbles will crash.
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B. Random Walk Beliefs

The mean dynamics illustrated in the preceding section suggest that if agents’ 
estimates evolve toward random walk beliefs, they can stay close to these beliefs for 
an extended period of time before !nally returning to the fundamentals REE values. 
To understand this, we follow Sargent (1999, chapter 6), in adapting an insight from 
John F. Muth (1960), and show that if agents hold random walk beliefs, then the 
resulting stochastic process can be almost self-ful!lling in the sense that the devia-
tion from rational expectations of the random walk approximation may be almost 
indetectable. The basic idea is that a random walk model approximates well a model 
with time-varying means.

Suppose that agents hold random walk beliefs based on a perceived law of motion 
of the form

   p t  =  p t−1  +  ε t  .
This arises under the learning model (3) provided c = 1, k = 0. Assuming also 
exogenous supply and  σ  t  2  =  σ  2 , and plugging these beliefs into the equation for 
stock price (2), these beliefs imply the price process

(17)   p t  = β( y 0  − a σ  2  s 0 ) + β L p t  − β a σ  2  v t  ,
where L is the lag operator. In terms of MA(∞) processes, under random walk 
beliefs,

(18)   p t  = (1 − L ) −1  ε t  ,
while under these beliefs the actual price process is

(19)   p t  = 9 + f  (L) v t  ,
where 9 = ( y 0  − a σ  2  s 0 )β/(1 − β) and f (L) = − βa σ  2 /(1 − βL). From (17), 
one can see that  σ  2 , the one-step ahead conditional variance of returns, is given by 
(10), the same expression as for the fundamentals solution. Thus, with the same 
value for  σ  2 , the mean price  p t  under random walk beliefs is the same as for the 
fundamentals solution.

Sargent (1999) emphasizes two features of misspeci!ed random walk beliefs that 
are evident in (18) and (19). First, random walk beliefs introduce serial correlation 
into a model that is not serially correlated under rational expectations (in the fun-
damentals solution). The moving average processes (18) and (19) demonstrate that 
the perceived serial correlation becomes almost self-ful!lling. Second, random walk 
beliefs can track constants well. In (18) there is no constant but in (19) there is. The 
random walk uses higher order moments to track low-frequency movements (i.e., 
the mean) in the price process.

For the problem at hand a key point is that random walk beliefs induce a price 
process that is almost self-ful!lling. To demonstrate this, we follow Sargent (1999) 
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in plotting the spectral density for the random walk perceived model and the spec-
tral density for the actual law of motion given these random walk beliefs. The 
result, given in Figure 5, shows that there is indeed a good match between spectral 
densities. We conclude that if a sequence of random shocks leads agents to have 
random walk beliefs concerning asset prices, these beliefs may last for a substantial 
period of time. Intuitively, because random walk beliefs are close to self-ful!lling, 
it is dif!cult to detect the misspeci!cation except by using long stretches of data. 
The mean dynamics do eventually return the system to the fundamentals REE, but 
transitional dynamics with random walk beliefs will be important. Furthermore, 
with constant-gain learning, there can be periodic returns to random walk beliefs 
and, as we shall see, the episodes of random walk beliefs can, for some parameter 
settings, be dominant.

In addition to being nearly self-ful!lling, random walk beliefs also lead to a sub-
stantial amount of excess volatility, in the sense that the unconditional variance of  
p t  is much higher than in the fundamentals solution. This is a result of the strong 
serial correlation in prices under (19). For the same innovation standard deviation 
βa σ  2  σ v , the unconditional variance of  p t  under random walk beliefs, compared to 
the fundamentals solution, is higher by a factor of (1 −  β  2  ) −1 . For the same reason, 
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changes in the estimate of the conditional variance of returns  σ  2  will have a magni-
!ed effect on unconditional price volatility. The process (19) remains linked to the 
fundamentals solution, but the near-random walk behavior, with much larger vola-
tility around the mean, implies that under these beliefs the price process is almost 
“detached” from the fundamentals solution. For 0 < β < 1 with β near one, ran-
dom walk beliefs are close to the rational bubble beliefs, in which the autoregressive 
parameter is  β  −1 . The price process resulting from random walk beliefs might thus 
be viewed as a bubble regime of the model.

C. Escape Paths

In Section IIIA, we showed !rst that even if expectations start at the fundamentals 
REE, under constant-gain learning, parameter estimates will vary randomly around it 
according to a distribution that is scaled by the gain parameter, i.e., to the sensitivity 
of agents’ beliefs to recent data. Second, we showed that if belief parameters wander 
far enough away from the fundamentals REE, the path back to the REE, governed by 
the mean dynamics, may include a period in which stock prices are believed to fol-
low a random walk. In Section IIIB, we further showed that such periods are likely 
to be sustained because random walk beliefs are approximately self-con!rming.

In the current section, we consider more speci!cally which “escape paths” are 
most likely to drive the system large distances away from the fundamentals and 
to generate random walk beliefs. The literature on “large deviations” and “escape 
paths” studies this question by looking for the “most likely unlikely sequences” of 
shocks that will drive the system a given distance away from the equilibrium. The 
central idea is that over long stretches of time there will, with high probability, be 
shock sequences that lead to large deviations. One can look for which “unlikely 
sequences” of shocks are “most likely” to occur over a given stretch of time, 
and study the features of the resulting paths. Given  γ 2 / γ 1 , in the small gain limit 
 γ 1 ,  γ 2  → 0 there is a dominant escape path.

To study this question, we use a version of the technique employed in CWS 
(2002). We consider different sequences of trinomial shocks for u and v that take 
on !xed (over time) values in {−  σ u ,  0,  σ u } and {−  σ v ,  0,  σ v }, respectively, and then 
simulate the model under learning starting from the fundamentals REE. We identify 
the various possible paths, with !xed values (over time) of the shocks drawn from 
these trinomial sets, that drive stock price away from the REE, and measure the 
relative likelihood of the alternative escape paths in terms of the speed with which 
the escapes occur. As in the study of the mean dynamics, we proceed numerically, 
using the baseline parameterization above with  γ 1  = 0.01, γ 2  = 0.02. We initialize 
c, k,  σ  2 , and the sample second moment matrix S at the fundamental REE, and then 
simulate the model under speci!ed nonrandom sequences of shocks. Once stock 
price rises to 1.5 times its fundamentals price (bubble) or 0.5 times the fundamen-
tals price (crash), we say that an “escape” has occurred. We use trinomial shocks 
because, in our framework in which estimated risk plays a central role, we need zero 
shocks to consider the impact of “unlikely” sequences of very small shocks.

We !rst illustrate how a bubble might arise by looking at a simulation with  
(u, v) !xed at their mean value (0, 0) each period. Figure 6 shows the path for  p t  , 
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the estimated AR(1) coef!cient  c t  , and the perceived risk  σ  t  2 . The repeated shocks  
(u, v) = (0, 0) induce decreases in  σ  t  2 . In line with the lower perceived risk, the  
demand for the risky asset increases, and so does  p t  . Under learning with small con-
stant gains, price increases take place gradually. The bottom panel presents a scat-
ter plot of  p t  and  p t−1 , showing that at the end of period 80 the data will lead the 
econometric model to !t a random walk for stock prices, i.e., a zero intercept and a 
slope coef!cient equal to one. The upward trend in stock prices that leads to the least 
squares estimate for  c t  to increase will, in turn, amplify the increase in  p t  . Continuing 
in this manner, eventually, c >  β  −1  and  p t  explodes. The price dynamics from that 
point forward depend critically on the perceived risk estimates as Figure 7 illustrates.

Figure 7 considers the sequence of “zero” shocks for two alternative gains on the 
risk estimates:  γ 2  = 0.0001 and  γ 2  = 0.01. We make agents’ estimates (c, k) evolve 
slowly by setting  γ 1  = 0.005. The left panels plot the simulations with  γ 2  = 0.0001. 
A positive bubble arises as price increases gradually, leading to increasing estimates 
for c, which feeds back into further price increases.14 As above, eventually c >  
β  −1  and price explodes along a bubble path. Because the risk estimates adjust very 
slowly the explosive trend in price leads c to increase faster than  σ  2 , and there is no 

14 The bottom panels plot early periods of the simulation in order to keep the scale illustrative of the emerging 
trend in price.
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limit to the bubble. The right panels illustrate simulations for the same sequence of 
shocks but with the higher gain  γ 2  = 0.01. The greater responsiveness of risk accel-
erates the upward trend in prices and the feedback through expectations. However, 
as c >  β  −1  and price begins to explode, perceived risk increases sharply and arrests 
the explosive trajectory of prices.15 Once prices begin to fall, a self-ful!lling crash 
occurs: expected price falls sharply and there are further sharp increases in  σ  2 . This 
feedback loop continues until price crashes to the “4oor.” Thus, learning about risk 
can play two important roles in a bubble and its eventual crash: it can reinforce 
the feedback effect of expected price and, if suf!ciently responsive, can eventually 
arrest an explosive upward movement in stock prices.

The simulations in Section IV show that the !rst “escape” path away from the 
fundamentals REE is often a crash rather than a positive bubble. To see how a crash 
might arise starting from the fundamentals REE, Figure 8 simulates the model, 

15 In a sense, real-time estimation of risk  σ  2  is acting like the “projection facility” sometimes used in the learning 
literature in that it prevents estimates of c and k, and hence prices, from exploding. However, unlike the standard 
projection facility, the stabilizing role of  σ  2  arises endogenously and has a natural economic interpretation.
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starting from a REE, for the “unlikely” sequence of !xed shocks (u, v) = (0, 0.2). 
Intuitively, we expect such an unlikely sequence to trigger a crash because positive 
share supply shocks will decrease stock prices, with crashes developing because of 
self-ful!lling expectations about stock prices.

Figure 8 plots two separate simulations. The dotted line is for a small gain  γ 1  = 0.002, 
while the solid lines are for  γ 1  = 0.01. In each case (see the third panel), the risk 
estimates here are assumed to be held !xed at their REE value (by setting  γ 2  = 0) 
so as to focus on the expected price effects. Since we are considering a sequence of 
repeated !xed shocks (u, v) = (0, 0.2), this eventually leads agents to expect prices to 
return not to their original fundamental value but rather to a new “pseudo steady-state” 
 
_ p  ′ ≈ 4.7. In the case of the small gain,  p t  moves monotonically to the new steady-state. 
With the larger gain,  p t  converges to the new steady-state price, but there is overshoot-
ing arising from price expectations with the price falling to the 4oor before returning 
to  

_ p  ′. Thus, crashes arise during this sequence of shocks because of an overshooting in 
expectations via learning. When  σ  2  adjusts in real-time as well, the crash is magni!ed 
by increases in  σ  2 , brought on initially by the sequence of shocks.

These sequences of shocks illustrate representative cases of the possible routes to 
bubbles or crashes. Table 1 presents the results from various “unlikely” sequences 
of !xed shocks. For each nonrandom sequence of trinomial shock, Table 1 gives the 
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type of price dynamics, the time to reach a point outside of a neighborhood of the 
fundamental equilibrium, and the results from a long simulation. In each case, we 
set  γ 1  = 0.01,  γ 2  = 0.02. CWS (2002) identify the “most likely unlikely” sequence 
of shocks as the one that will move a system to a point away from the equilibrium 
in the shortest number of periods. According to Table 1, the “most likely unlikely” 
sequence of shocks is in the third row with (u, v) = (− σ u  ,  σ v ). These shocks are 
the most likely route away from the steady-state because they decrease price both 
directly, through increased share supply, and indirectly, by increasing perceived risk  
σ  2 . As we saw above, these direct and indirect effects on price produce dynamics 
well approximated by a random walk model, and price eventually crashes to the 
4oor. Table 1 indicates that !xed shocks (u, v) = (− σ u  ,  σ v ) lead stock price away 
from the fundamentals in the shortest amount of time.16 In most cases listed in 
Table 1, the resulting paths include both a crash and a bubble.

The escape path generated by the “most likely unlikely” sequence of shocks is 
the one that dominates in the small gain limit, but for !nite gains a variety of escape 
paths will arise, and larger gains can exhibit a wide variety of escape dynam-
ics. In addition to bubbles arising from sequences of zero (or near zero) shocks  
(u, v) = (0, 0), Table 1 shows that bubbles will also arise in response to sequences 
of negative share supply shocks, which put prices on a gradual upward trajectory. In 
summary, depending on the shock realizations, the model with learning about risk and 
return is able to generate a rich set of theoretical possibilities for stock price dynamics.

IV. Recurrent Bubbles and Crashes

The results in Sections II and III have indicated that while the fundamentals REE 
is locally stable under real-time learning, displaced estimates of risk and returns, 
suf!ciently away from the fundamentals equilibrium value, can induce learning 
dynamics that send beliefs for a sustained period of time into a random-walk region 
that is nearly self-ful!lling and that exhibits a much higher level of price volatility. 
Changing estimates of risk play key roles in these dynamics by pushing prices away 
from the fundamentals equilibrium, leading to bubbles or crashes, or bubbles fol-
lowed by crashes, and contributing to price volatility in the random walk regime.

Under constant-gain real-time learning, in which agents discount past data, we 
anticipate the possibility of seeing a regime of bubbles and crashes periodically 

16 However, note that with normally distributed random shocks (u, v) values near (0, 0) are more likely than 
values near one standard deviation.

Table 1—Results from Unlikely Sequences

u0 v0 Description Time to pt = {  1.5 
_ p  
 _ 

0.5 
_ p  

  Long simulation

σu σv crash 716 crash → steady-stateσu −σv bubble 146 bubble → crash → steady-state−σu σv crash 32 crash → bubble → steady-state−σu −σv bubble 92 bubble → crash → steady-state
0 0 bubble 132 bubble → crash → steady-state
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emerge from the fundamentals solution before subsiding and returning to the fun-
damentals for a period of time before eventually again emerging. We would expect 
the frequency with which the regime of bubbles and crashes appears to be con-
trolled by gain parameters. To study the issue further requires stochastic simula-
tions for the system (11)–(14), with  γ 1, t  =  γ 1  and  γ 2, t  =  γ 2 . Figures 9–12 present 
the numerical results. We choose the same parameter values as above, and in order 
to focus on the effects of the gain for risk estimates,  γ 2 , we !x  γ 1  = 0.01 and look 
at the impact of varying  γ 2 . Larger gains  γ 2  correspond to greater discounting of 
past data and hence a greater sensitivity to recent data. In each !gure, we report the 
results from a typical simulation of length 10,000, which follows a 5,000 length 
transient period.

Figure 9 gives results from a simulation with  γ 1  = 0.01 and a very small gain 
for risk estimates,  γ 2  = 0.001. The top panel plots the stock price  p t , while the mid-
dle and bottom panels plot the estimated autoregressive parameter  c t  and the risk 
estimate  σ  t  2 , respectively. The belief parameters stay near their fundamentals REE 
value, and, as a result,  p t  is close to the fundamentals REE, a constant plus a white 
noise process. If  γ 2  is increased to  γ 2  = 0.01, the plots (not shown) for  p t  now 
exhibit a smooth low-frequency process superimposed on the fundamentals REE, 
and the estimated value of  σ  t  2  displays more volatility. However, the model still does 
not exhibit bubbles or crashes.
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In Figure 10, the gain is increased to  γ 2  = 0.02. Initially the dynamics look as 
they did in the previous !gures, but beginning around period 2,200, there is a sud-
den qualitative change in the dynamics with three crashes and a bubble. Between 
the crashes and bubbles, the dynamics converge back to a neighborhood of the fun-
damentals REE. Notice how the beliefs for c,  σ  2  correspond to the mean dynamics 
pattern seen in Figure 4. Figure 11 plots a “zoomed in” portion of a typical simu-
lation, plotting together the stock price  p t  and the inverse risk-measure 1/ σ  t  2 . The 
!gure shows movements in the risk-estimate preceding large qualitative changes in 
the stock price. In particular, before a bubble episode there is a signi!cant decrease 
in the perceived risk, while before the crashes the risk estimate increases. This is in 
line with the analysis in Section IIIC.

Figures 9 and 10 illustrate how learning about risk and return interact to cre-
ate bubbles and crashes. In Figure 12, we increase  γ 2  further to  γ 2  = 0.04, which 
leads to a further qualitative shift. Again, initially the dynamics are not far from the 
fundamentals REE, but then around period 1,600, there is a dramatic change in the 
nature of the price and belief dynamics, starting with jumps in both  c t  and  σ  t  2 . These 
induce a crash in the stock price, which is then followed by a series of bubbles and 
crashes in the sense of sustained deviations from the fundamentals price. The price 
dynamics follow a path somewhat reminiscent of the detrended log S&P 500 index.
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The bottom two panels of Figure 12 illustrate how beliefs generate these recur-
rent bubbles and crashes. After the qualitative change in the dynamics around period 
1,600 there are frequent jumps in  σ  2 , and c spends considerable time near c = 1. For 
this parameter, setting the random walk beliefs regime becomes almost permanent. 
In this regime, prices remain centered at the fundamentals value, with positive and 
negative deviations about equally likely. With the larger gain  γ 2  = 0.04, the endog-
enous shifts in volatility create sustained movements in prices that are well tracked 
by a random walk and largely offset the pressure from the mean dynamics to return 
to the fundamentals REE.

In Figures 9, 10, and 12, the horizontal line in the middle panel, showing  c t  , is set 
equal to c =  β  −1 , the rational bubble value, which is slightly in excess of c = 1. In 
Section II, we saw that the rational bubble solutions were not locally stable under 
learning. However, in Section III, we saw that, following some plausible random 
displacements from the fundamentals equilibrium, mean dynamics paths often vis-
ited for substantial periods of time the random walk beliefs that are prominent in 
Figure 12. Because random walk beliefs are close to rational bubble beliefs, they 
are almost self-ful!lling. Moreover, since random walk beliefs are nearly detached 
from the fundamentals value, and generate substantial excess volatility, it is natural 
to describe this as a bubble regime. In contrast to the rational bubbles literature, a 
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central role in our model is played by agents’ estimates of risk. Furthermore, in our 
model agents’ estimates of both returns and risk are driven by fundamental shocks. 
Revisions in risk are associated with escapes from the fundamentals solution and 
with sustaining the regime of bubbles and crashes.

A !nal issue that warrants comment is the time scale and the frequency of bub-
bles. The current parameterization would suggest that bubbles occur about every 
100 years or so, which is clearly not empirically realistic. By choosing values of 
β closer to 1, and selecting alternative gain parameters, it is possible to generate 
bubbles at a much higher frequency. However, the simulated stock prices become 
very noisy. Our parameter values, β = 0.95, γ 1  = 0.01, and  γ 2  = 0.02, 0.04, were 
chosen because they generated !gures that most clearly illustrate the mechanics of 
the model. A more carefully calibrated version of the model would require altering 
several modeling features as discussed below.

V. Further Discussion and Literature Review

We have developed a simple linear asset pricing model capable of generating bub-
bles and crashes when agents use constant-gain learning to forecast expected returns 
and the conditional variance of stock returns. The approach here has been informed 
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by an in4uential literature on periodically collapsing rational bubbles. Blanchard 
and Watson (1982) propose a theory of rational bubbles in which agents’ (rational) 
expectations are in4uenced in part by extrinsic random variables whose properties 
accord to historical bubble episodes. Kenneth D. West (1987), Kenneth A. Froot and 
Maurice Obstfeld (1991), and Evans (1991) construct rational bubbles that periodi-
cally explode and collapse.17 A controversial issue for rational bubbles is that the 
trigger for the bubble collapse is often modeled by an exogenous sunspot process. 
Our model instead predicts bubbles and crashes as self-ful!lling responses to funda-
mental shocks, arising from the adaptive learning of agents.

Our approach is also related to other strands of the literature. The learning dynam-
ics are similar to the hyperin4ation analysis of Marcet and Juan P. Nicolini (2003) 
and Sargent, Williams, and Tao Zha (2009) in that occasional shocks can trigger, via 
the learning dynamics, sudden departures from a rational expectations equilibrium. 
Klaus Adam, Marcet, and Nicolini (2008) adopt a consumption-based asset pricing 
model and replace rational expectations with least squares learning. They !nd that the 
model does a better job at matching several quantitative features of stock price time 
series data. Allan G. Timmermann (1993, 1994, 1996) examines learning in a pres-
ent value model of asset pricing and Eva Cárceles-Poveda and Chryssi Giannitsarou 
(2008) study asset pricing with constant-gain learning in an RBC-type model. 
Timmermann (1993, 1994, 1996), as in our model, uses adaptive learning to gener-
ate excess volatility in asset returns. We generate distinct results since Timmermann 
(1993, 1994, 1996) emphasizes traders forecasting the exogenous dividend process, 
whereas our model of learning is self-referential, and since neither Timmermann 
(1993, 1994, 1996), Cárceles-Poveda and Giannitsarou (2008), or Adam, Marcet, 
and Nicolini (2008) examine the implications of learning about asset price volatil-
ity. Finally, that learning can generate large stock returns has been pointed out by 
John Geweke (2001) and Martin L. Weitzman (2007) in a Bayesian learning context. 
These papers demonstrate that with CRRA utility, Bayesian learning implies an in!-
nite stochastic discount factor, a property that is not needed in our framework.

A distinguishing feature of our model is that risk plays a central role. Similar to 
our paper, Harrison Hong, Jose Scheinkman, and Wei Xiong (2006) assume that 
traders have mean-variance preferences and that there is asset 4oat. In their paper, 
bubbles arise because insiders (those “4oating” asset shares) and outsiders have 
different information about the underlying asset. Outsiders overestimate the value, 
bidding up the price, and then, when the lock-ups expire, insiders sell their shares 
and prices crash. In our paper, asset 4oat is a necessary component for the environ-
ment to provide agents an incentive to estimate the variance of returns, and it is the 
real-time estimation of risk by private agents that is a driving factor of our model.

The onset of bubbles and crashes, as illustrated in Figure 10, is reminiscent of 
the escape dynamics identi!ed by Sargent (1999), CWS (2002), Williams (2009), 
and Cho and Kenneth Kasa (2008). We showed that certain “unlikely” sequences of 
shocks, reinforced by the feedback from adaptive beliefs, introduce serial correlation 

17 There is a wide literature that catalogs theoretical objections to bubbles. For instance, Behzad T. Diba and 
Herschel I. Grossman (1988) show that since free disposal implies price can never be negative, if a bubble collapses 
to zero, then a rational bubble can never again arise.
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that would not otherwise exist, and that for some sequences of shocks, agents’ fore-
casting rule begins to track this serial correlation via a random walk forecasting 
model. This “escape” from a serially uncorrelated process to a serially correlated 
time series, well approximated by a random walk, arises endogenously, and this 
shift in beliefs leads to recurrent bubbles and crashes.

An issue that should be addressed in future research is the choice of the time 
interval. There are three separate questions: the length of private agents’ planning 
horizon; the frequency with which they update their recursive models; and the fre-
quency with which they update their information sets. In the present paper, for theo-
retical convenience, these are all chosen to be the same unit. In work in progress, 
we construct a model with planning horizons longer than the estimation and infor-
mation gathering windows. This introduces additional complexity to the model that 
would be important for a serious empirical exercise.

VI. Conclusion

This paper generates bubbles and crashes in a simple linear asset pricing model 
with adaptive learning. The existence of recurrent bubbles in a model with adaptive 
learning has been an open question in macroeconomics. Our central insight is that in 
an environment in which traders are risk averse as well as boundedly rational, in the 
sense that they do not know the true law of motion governing prices, changes to their 
forecasts of both the conditional mean and the conditional variance of stock returns 
play a central role in asset price dynamics. In particular, we show that when agents 
use constant-gain econometric learning, which to some extent discounts past data, 
learning dynamics can generate frequent deviations from the fundamentals solution 
taking the form of bubbles and crashes.

We identify several roles for real-time learning of risk. First, occasional shocks can 
lead agents to revise their estimates of risk in dramatic fashion. A sudden decrease or 
increase in the estimated risk of stocks can propel the system away from the funda-
mentals equilibrium and into a bubble or crash. Second, along an explosive bubble 
path, risk estimates tend to increase and can become high enough to lead asset demand 
to collapse and stock prices to crash. Third, under learning, estimates for stock returns 
will occasionally escape to random walk beliefs that can be viewed as a bubble regime 
in which stock prices exhibit substantial excess volatility. In this regime, revisions of 
risk estimates play an important role in generating the movements of prices that sus-
tain the random walk beliefs. In summary, risk in an adaptive learning setting plays 
a key role in triggering asset price bubbles and crashes. These intuitive and plausible 
results provide insights into the mechanisms by which expectations, learning and 
bounded rationality generate large swings in asset prices.

Appendix

Overlapping Generations Framework.—Here, we describe a simple overlapping 
generations model, based on DeLong et al. (1990), which delivers the pricing equa-
tion (1). Agents live two periods. The number  n t  of young agents is an identically 
and independently distributed random process with an inverse mean of one. There 
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is a single consumption good. When young, each agent receives an endowment of ω 
units of the good. Agents consume only when old, with CARA utility, as described 
below. All of the endowment is saved using one of two assets. Using a riskless stor-
age technology, agents receive R =  β  −1  > 1 units, when old, for every unit saved 
when young. Alternatively, agents can purchase a risky asset, which is in !xed sup-
ply  s 0 . Because  n t  is random, the per capita supply of the risky asset  z st  is random, 
and we write  z st  =  s 0  V  t  , where  V  t  = 1/ n t  . The risky asset pays a random dividend 
paid the following period,  y t+1  =  y 0  +  u t+1 , where  u t  is white noise. The price of the 
risky asset at time t is  p t  and, when old, the agent, after receiving the dividend, sells 
the asset at price  p t+1 .

Preferences take the CARA form

  U( c t+1 ) = − exp{−a c t+1 },
where a > 0 is the coef!cient of absolute risk aversion, and young agents choose 
their portfolio to maximize the conditional expectation of U( c t+1 ). Agents assume 
that  p t+1  +  y t+1  and, hence,  c t+1  is normally distributed, and thus it is equivalent for 
them to maximize

   E  t  *  U( c t+1 ) = − exp{−a E  t  *   c t+1  + ( a 2 /2)Va r  t  *   c t+1 }.
Here,  E  t  *  denotes the conditional expectation and Va r  t  *  the conditional variance of 
a random variable based on the subjective probability distribution of the agents. 
Letting  z dt  denote the number of “shares” or units of the risky asset chosen by the 
young agents, their budget constraint is given by

   c t+1  = (ω −  p t   z dt ) β  −1  +  z dt ( p t+1  +  y t+1 ).
Thus,

   E  t  *  c t+1  =  (ω −  p t   z dt ) β  −1  +  z dt   E t ( p t+1  +  y t+1 )
  Va r  t  *   c t+1  =   z  dt  2

  Va r  t  * ( p t  +  y t+1 ) ≡  σ  t  2 .
The optimal choice of  z dt  must satisfy the !rst-order condition

  −  p t   β  −1  +  E  t  * ( p t+1  +  y t+1 ) − a z dt   σ  t  2  = 0, or

   z dt  =   
 E  t  * ( p t+1  +  y t+1 ) −  β  −1  p t    __  

a σ  t  2    .

The equilibrium price  p t  is determined by  z dt  =  z st  . Under the assumptions given 
above, per capita supply  z st  =  s 0  V  t  is exogenous, where  z st  is independently and 
identically distributed with E z st  =  s 0  . Under rational expectations,  E  t  * ( p t+1  +  y t+1 )  =  E t (  p t+1  +  y t+1 ), the true conditional expectation under the objective probability 
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distribution, and  σ  t  2  = Va r t (  p t  +  y t+1 ), the true conditional variance. For  u t  and  
V  t  independent normally distributed processes, the “fundamentals” solution is 
given in the text, and it can be shown that  p t+1  +  y t+1  is normally distributed with  
Va r t ( p t  +  y t+1 ) constant over time.

In the version of the model with endogenous supply at low prices, it is assumed 
that net supply is reduced when  p t  falls suf!ciently far. This might arise, for exam-
ple, if there is another class of agents—e.g., long-lived agents with an alternative use 
of the asset that becomes pro!table at low prices—with a demand for the asset pro-
portional to price when  p t  falls below a speci!ed threshold. This leads to a net supply 
of assets available to young agents that takes the form  z st  = {min( s 0 , Φ p t )} ⋅  V  t  .

Stochastic Approximation ODE.—Set  γ 1, t  =  γ 2, t  =  t −1  and let  z t  =  p t  −  
 θ  t−1  ′    X t−1  +  u t  = (T( θ t−1 ;  σ  t−1  2

  ) −  θ t−1 ) X t−1  − aβ σ  t−1  2
   v t  +  u t . Then (12)–(15), with 

exogenous supply, is

(20)   θ t  =   θ t−1  +  t −1   S  t−1   −1 
   X t−1   X  t−1  ′  (T( θ t−1 ;  σ  t−1  2

  ) −  θ t−1 )′ − aβ σ  t−1  2
    v t 

(21)   S t  =   S t−1  +  t  −1 (  t _ 
t + 1

   ( X t    X  t  ′  −  S t−1 ))
(22)   σ  t  2  =   σ  t−1  2

   +  t −1 ( z t    z  t  ′  −  σ  t−1  2
  ),

where (15) has been used to substitute for  p t  under learning. De!ning  ϕ t  = ( θ t  , vec( S t ),  σ  t  2 )′, this speci!es the updating equation (t, ϕ,    
_ X  t (ϕ)). Using the framework of Evans 

and Honkapohja (2001), the ODE (ordinary differential equation) associated with the 
asymptotic behavior of the learning algorithm is given by (16), with h(ϕ) components 
given by

   h θ  =   S −1 M(θ,  σ  2 )(T(θ;  σ  2 ) − θ)′
   h S  =  M(θ,  σ  2 ) − S

   h  σ  2   =  (T(θ;  σ  2 ) − θ)M(θ,  σ  2 )(T(θ;  σ  2 ) − θ)′ +  σ  u  2  + (aβ σ  2  ) 2  σ  v  2  −  σ  2 ,
where M(θ,  σ  2 ) = E X t (θ,  σ  2 ) X t (θ,  σ  2 )′. Note that at a REE, S = M(θ,  σ  2 ), and the  h θ  
components reduce to T(θ;  σ  2 ) − θ. Here, θ = (k, c)′ and T(θ;  σ  2 ) is given by (8).
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