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• An asset pricing model where agents forecast the conditional variance of a stock’s return.

• Agents believe prices follow a random walk with a conditional variance that is self-fulfilling.

• Agents estimate risk in real-time using a constant gain algorithm, bubbles and crashes can arise.

• ARCH effects arise from updating risk, and effects are stronger when agents estimate an ARCH model.
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a b s t r a c t

A restricted-perceptions equilibrium exists in which risk-averse agents believe stock prices follow a

random walk with a conditional variance that is self-fulfilling. When agents estimate risk, bubbles and

crashes arise. These effects are stronger when agents allow for ARCH in excess returns.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An open question in models of asset pricing is the role played

by movements in risk premia in generating bubbles and crashes

(Greenspan, 2005). Branch and Evans (2011), building on the adap-

tive learning literature in asset pricing (e.g. Barsky and DeLong,

1993, Timmermann, 1993, Brock and Hommes, 1998; Evans and

Honkapohja, 2001, Lansing, 2010; Adam et al., 2010), replace ra-
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tional expectations with an econometric learning rule. A feature

of Branch–Evans is that agents estimate risk – the conditional vari-

ance of net stock returns – andwhen this is combinedwith estimat-

ing expected stock returns, adaptive learning can generate bubbles

and crashes. A key mechanism is that adaptive learning introduces

serial correlation that would not otherwise exist, which can lead

agents’ forecasting rule to track this correlation with an approxi-

mately self-fulfilling random-walk model.

This paper focuses in more detail on the role of risk in

propagating bubbles and crashes, and in particular examines the

role of ARCH effects that may be present. We begin by attributing

to traders random-walk beliefs about stock prices.We then assume

that traders estimate the risk of the stock by formulating one of

two econometric models: a simple recursive algorithm and an

ARCH model for the conditional variance of stock returns. It is not

obvious, a priori, whether an econometric learning rule designed
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to account for ARCH effects (as in Engle, 1982) will weaken or

strengthen the bubble effect. We find that when agents allow

for ARCH effects the tendency for learning about risk to generate

bubbles and crashes actually appears strengthened.

We proceed as follows. To begin, we demonstrate that there

exists a unique, stable restricted perceptions equilibrium under

random-walk beliefs. We then show that when agents use a

constant gain (or ‘‘perpetual learning’’) algorithm, bubbles and

crashes can emerge. ARCH effects can arise from agents’ updating

of their risk estimates, and these effects are stronger when agents

estimate an ARCH model. Bubbles in this setting emerge as

sequences of shocks push agents’ estimates of risk down—in the

case of the ARCH model agents explicitly forecast that this lower

risk will persist into the near future. The lower estimates of risk

lead to prices being bid up, buoyed by the feedback from random

walk beliefs. This cycle persists until agents’ estimates of risk

eventually increase as the dynamics push estimates back towards

the stable equilibrium value. The process as a whole generates

recurrent bubbles and crashes.

2. Asset pricing with random-walk beliefs

We follow De Long et al. (1990) and adopt a mean–variance

linear asset pricingmodelwith one risky asset that yields dividends

{yt} and trades at the price pt , net of dividends, and a risk-free asset

that pays the rate of return R = β−1 > 1. The demand for the risky

asset is

zdt = Êt(pt+1 + yt+1) − β−1
pt

aσ 2

t

where Êt is the conditional expectations operator based on

the agent’s subjective probability distribution and σ 2

t
is the

corresponding perceived conditional variance of excess returns

pt+1 + yt+1 − β−1
pt . The equilibrium price pt is given by zdt = zst ,

where zst is the (random) supply of the risky asset at time t .

It follows that

pt = βÊt (pt+1 + yt+1) − βaσ 2

t
zst . (1)

We assume that yt = y0 + εt and that zst = {min(s0, Φpt)} · Vt

where εt , Vt are uncorrelated i.i.d. shockswith EVt = 1, s0 > 0 and

Φ = s0/(p̄ξ), where p̄ is the mean stock price in a fundamentals

based equilibrium and 0 < ξ < 1.
1
Share supply is exogenous

except when the price falls well below its fundamental value. This

assumption provides a flexible price floor in the event of a stock-

price crash. We will assume throughout that agents know the true

dividend process, so that Êt yt+1 = y0.

In Branch and Evans (2011), we studied the price dynamics

under learning, about both expected future price pt+1 and the

risk of the stock σ 2

t
, and found that under constant-gain learning

the model could generate recurring bubbles and crashes.
2
A key

to these results was that under learning agents might believe,

often for a long stretch of time, that stock prices were following a

random walk. Furthermore we found that these beliefs are nearly

self-fulfilling. The current paper assumes that agents perceive

stock prices to follow a random-walk process, and then use an

econometric model to uncover the stock’s riskiness in real time.

We also assume that under random-walk beliefs the conditional

variance σ 2

t
= Êt

�
pt+1 − Êtpt+1 + yt+1 − Êt yt+1

�
2

is believed to

1
In simulations, we set ξ = 0.1 which implies share supply is exogenous except

when the price falls below 10% of its mean value.

2
In a model of heterogeneous beliefs, Gaunersdorfer (2000) models agents who

estimate asset price risk.

be given by

σ 2

t
= Êt(pt+1 − pt−1 + εt+1)

2 = Êt (pt+1 − pt−1)
2 + σ 2

ε .

Before turning to the dynamics under learningwe first solve for the

restricted perceptions equilibrium (RPE), in which agents treat σ 2

t
as

a constant over time, σ 2

t
= σ 2 = E(pt+1 − pt−1 + εt+1)

2
. We then

look for the self-fulfilling value of σ 2
.

When agents hold random-walk beliefs about stock prices, the

actual process for stock prices is pt = βy0 +βpt−1 −βaσ 2
zst . Here

wehave assumed that current price pt is not part of the information

set when expectations of pt+1 are formed, so that under random-

walk beliefs Êtpt+1 = Êtpt = pt−1. The actual price process can be

rewritten as

pt = β(y0 − aσ 2
s0) + βpt−1 − βaσ 2vt , or (2)

p̃t = βp̃t−1 − βaσ 2vt , where p̃t = pt − Ept

where vt is the zero-mean shock defined by Vt = 1 + vt/s0.
3

Note that for 0 < β < 1 close to β = 1 random-walk beliefs

are almost self-fulfilling. The actual conditional variance of excess

returns implied by these beliefs is

Et (pt+1 − pt−1)
2 + Etε

2

t+1

=
�
β2 − 1

�2
p̃
2

t−1
+ (1 + β2)(βaσ 2)2σ 2

ν + σ 2

ε

where σ 2

ν denotes the variance of vt . Noting that Ep̃
2

t
= (1−β2)−1

(βaσ 2)2σ 2

ν , it is straightforward to compute that themapping from

perceived σ 2
to actual σ 2

is

T (σ 2) = 2(aβσ 2)2σ 2

ν + σ 2

ε .

AnRPE is then a fixed point of the T -map, i.e.σ 2 = T (σ 2). It follows

that in a RPE

σ 2 = 1 ±
�
1 − 8a2β2σ 2

ε σ 2
ν

4a2σ 2
ν β2

.

There are two positive roots. However, Proposition 1 below

demonstrates that (only) the smaller root σ 2

L
is stable under

learning.

It is worth remarking that in a fundamentals-based ratio-

nal expectations equilibrium (REE), the mean stock price is

β
�
y0 − aσ 2

s0

�
/(1−β), which is identical to themean stock price

in a RPE. However, the equilibrium risk σ 2
is higher in a RPE than

in the REE. In addition, as discussed below, learning about risk can

give rise to additional stock-price dynamics that are qualitatively

very different from the RE.

3. Two learning models for risk

This section develops two theories of how agents might

econometrically estimate risk and demonstrates that the RPE is

stable under learning.

A simple recursive model for estimating the risk of a stock is

given by
4

σ 2

t
= σ 2

t−1
+ γt

�
(pt − pt−2 + εt)

2 − σ 2

t−1

�
. (3)

For the stability results in this section, the gain γt is set to γt = t
−1

so that (3) corresponds to the recursive least squares estimator for

a regression on a constant of the squared forecast error of excess

returns. In the numerical simulations belowwe assume a constant

3
We are assuming that Φ and the support of the zst are sufficiently small so that

in the RPE we always have zst = s0Vt .

4
A similar learning rule was employed by Branch and Evans (2011) and LeBaron

(2013).
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gain γt = γ , where 0 < γ < 1 is small, so that the recursive

algorithm is a form of discounted least squares. Decreasing gains,

such as γt = t
−1

, allow for convergence to the RPE and is thus

suitable for studying the local stability of an equilibrium. Constant

gains are preferable in environments where agents might be con-

cernedwith structural change and also have the advantage of being

a time-invariant, or perpetual, learning rule.

An alternative learning algorithm arises when agents perceive

the conditional variance of returns to follow an autoregressive

conditional heteroskedasticity (ARCH) process. Suppose that

agents believe that risk follows the perceived law of motion

σ 2

t
= α0 + α1σ

2

t−1
+ ηt

where ηt is a perceived white noise error. Agents estimate their

ARCH coefficients (α0, α1) by regressing the squared forecast error

of excess returns on a constant and on an average of m of its

own lagged values. Let θ � = (α0, α1), zt = pt − pt−2 + εt , z̄
2

t

= (1/m)
�

m−1

j=0
z
2

t−j
and X

�
t

= (1, z̄2
t
). Then a recursive ARCH

estimator is

θt = θt−1 + γt S
−1

t−1
Xt−1

�
z
2

t
− θ �

t−1
Xt−1

�
(4)

St = St−1 + γt+1

�
XtX

�
t
− St−1

�
.

Here St is an estimate of EXtX
�
t
, the second moment matrix of the

regressors. Combining (2) with learning algorithm (3) or (4) leads

to a fully specified data-generating process under learning.
5
We

have the following stability result for the risk estimator (3).

Proposition 1. Under the adaptive learning algorithm (3) with

exogenous share supply and gains γt = t
−1

, the restricted perceptions

equilibrium σ 2 = σ 2

L
is locally stable under learning.

Analytic results are unavailable for algorithm (4). However, nu-

merical analysis shows that σ 2 = σL is stable under ARCH learning.

4. Bubbles, crashes, and risk

In this section, we consider a constant gain learning version

of the model and use numerical simulations to demonstrate the

theoretical possibility that stock prices can exhibit nearly self-

fulfilling ARCH effects and recurrent bubbles and crashes that

result from the real-time updating of risk.We choose the following

parameterization: β = 0.98, y0 = 1.5, s0 = 1, a = 0.55, σ 2

ε =
0.95, σ 2

ν = 0.45.6

Fig. 1 plots the results of a 10,000 period simulation for a small

constant gain of γ = 0.0001. The top panel plots the stock price

and the bottom panel plots the real time risk estimates. The right

panels are for the ARCH learningmodel, while the left is the simple

recursive algorithm. In a fundamentals REE stock price follows an

i.i.d. process. With random walk beliefs, stock price is strongly

serially correlated. Fig. 1 demonstrates that with a small gain there

is little variation in real time risk estimates and stock prices do not

exhibit bubbles or crashes.

Fig. 2 presents the results from simulations with a larger gain

γ = 0.03. There is significantmovement in the estimated riskwith

periods of declining risk estimates and other periods of elevated

risk. Clearly, movements in risk lead to bubbles and crashes in

which stock price deviates significantly from its fundamentals

value. A decline in perceived risk leads to a bubble: as traders

5
For simplicity we have specified the ARCH as a parsimonious ARCH (m) model

in which the m slope coefficients are constrained to be equal. The results are not

greatly sensitive to this specification.

6
These parameter values are chosen for illustrative purposes; a serious cali-

bration would require a more complicated model than the simple mean–variance

framework employed here.

perceive lower risk, their demand increases, leading to higher

prices that persist because random walk beliefs interpret these

innovations as permanent price increases.

We also note that Eq. (1) implies that expected future returns

decline along a bubble path. In our set-up, lower perceived risk

leads to a higher price, and this in turn leads to a higher expected

future price next period. However, given expectations, (1) dictates

that the market-clearing price must be sufficiently high to give a

lower expected rate of return that offsets the lower perceived risk.

This is inconsistent with survey evidence that investors typically

expect high future returns nearmarket peaks when prices are high

relative to the fundamentals (see Jurgilas and Lansing, 2012 and

Greenwood and Shleifer, 2013).
7
Despite this issue, we believe

our model offers a compelling description of the way in which

endogenous changes in perceived risk can lead to large, partially

self-fulfilling movements of asset prices, manifested as bubbles

and crashes.

Recurring bubbles and crashes arise whether or not agents

allow for ARCH effects in their estimation of risk. Fig. 2 also

demonstrates that constant-gain learning about risk can generate

ARCH effects. In Fig. 1, with γ = 0.0001, real-time risk estimates

were near their equilibrium value. In Fig. 2, the estimated risk for

the ARCHmodel (SE corner) exhibits ARCH effects as σ 2

t
fluctuates

between periods of high and low volatility. Although perhaps not

as noticeable for algorithm 1, it is possible to test for ARCH effects

by constructing the test statistic in Engle (1982). We found that for

γ = 0.0001 the test statistic fails to reject the null that squared

excess returns are i.i.d., while for γ = 0.03 we do reject the null of

no ARCH. Learning about risk introduces ARCH effects and allowing

for ARCH effects is partially self-fulfilling. Furthermore, when

agents allow for ARCH effects in their estimates, this reinforces the

role played by risk in generating bubbles and crashes, as can be

seen in the top panels of Fig. 2. For larger values of the constant

gain, γ , the simple recursive algorithm is able to generate more

volatile asset prices. However, the ARCH effects from the ARCH

model is stronger and, therefore, would be better able to capture

ARCH effects in real world stock prices.

Fig. 3 focuses on a bubble episode (and the subsequent crash)

from a long simulation assuming ARCH learning (4). The bottom

panel also includes a plot of the real time least squares ARCH

coefficient estimates α0,t , α1,t . The RPE value computed earlier

corresponds to α1 = 0. Beginning in the first period, there is a

sustained decrease in perceived risk. Moreover, the estimates for

α1,t attribute persistence to the decline in risk, which leads to

further declines in perceived risk, and translates into a bubble as

these price innovations feedback through the randomwalk beliefs

of agents. This figure clearly demonstrates how real time learning

about risk can generate bubbles and crashes in stock prices.

5. Conclusion

This paper adopted a least-squares learning environment to

generate recurrent bubbles and crashes. The model consists of

risk-averse traders each of whom believe that stock prices follow

a random walk. Random walk beliefs were shown by Branch

and Evans (2011) to be nearly self-confirming. Risk averse agents

need to also forecast the riskiness of stocks – measured as the

conditional variance of excess returns – and so they adopt an

econometric forecasting model whose parameters are updated

with a form of discounted least squares (constant gain learning).

The results presented in this paper demonstrate that (1) there

7
Gelain and Lansing (2013) present a model with external habit formation that

gives rise to time-varying risk premia and expected returns in line with survey

evidence.
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Fig. 1. Stock price dynamics with a small gain (γ = 0.0001).

Fig. 2. Stock price dynamics with gain γ = 0.03.

Fig. 3. Bubble (ARCH learning) with gain γ = 0.03.

exists a unique restricted perceptions equilibrium that is stable

under learning, (2) that when agents update their risk estimates

in real time with constant gain least squares, recurrent bubbles

and crashes can arise, and (3) ARCH effects arise endogenously

from agents’ learning. These ARCH effects are detectable, andwhen

agents allow this in their algorithms, it strengthens the effect that

risk has in generating bubbles and crashes.

Appendix

Proof of Proposition 1. Let zt = pt − pt−2 + εt . Let Xt = (1, z2
t
)�.

Then with exogenous share supply we have

σ 2

t
= σ 2

t−1
+ t

−1
�
z
2

t
− σ 2

t−1

�

for algorithm 1. �

Define φ = σ 2
. Using standard techniques, e.g. Evans

and Honkapohja (2001), the differential equation governing local

stability of the learning dynamics is

dφ

dτ
= h(φ)

where h(φ) = T (σ 2) − σ 2
. Locally stable RPE are associated with

the stable rest points of this equation. It suffices to checkDT (σ 2

L
) =

4(aβ)2σ 2

L
σ 2

ν , whereas DT > 1 at the larger root for σ 2
.
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