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Abstract

This paper gives local stability conditions for convergence of the price dynamics in
a cobweb model with rationally heterogeneous expectations, generalizing the example
of Brock and Hommes (1997). When agents choose between rational, naive, and
adaptive beliefs, the steady state may be locally asymptotically stable if the adaptive
predictor places enough weight on past prices and is costless. If adaptive expectations
are su8ciently more costly than naive expectations the steady state will be an unstable
saddle point. Our results imply that adding a choice can stabilize a system which is
unstable under the Brock and Hommes model. These results illustrate how the critical
parameter that governs stability is dependent on the array of available predictors.
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1. Introduction

The rational expectations hypothesis continues to have a dominant in>u-
ence on dynamic macroeconomic research. Though many papers such as Bray
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and Savin (1986), Evans and Honkapohja (1999), Guesnerie (1992), Evans
and Guesnerie (1993), and Townsend (1978) examine the stability of ra-
tional expectations equilibria under various expectation formation schemes,
among researchers there is no consensus about how to model the process of
structuring beliefs. 1

Recent work takes a more traditional rational approach to expectation for-
mation by modeling it as an economic decision. Evans and Ramey (1992)
assume that expectations are the by-product of a decision to use a costly
algorithm to update prior beliefs, or, at no cost leave them Hxed. Evans and
Ramey (1998) extend this approach by having agents use a mechanism for
directly calculating expectations, but they must pay a resource cost for the
privilege. In more recent work, Brock and Hommes (1997) consider expec-
tation formation as the rational choice between various costly forecasts.
This seminal approach of Brock and Hommes (1997), called the adaptively

rational equilibrium dynamics (ARED), is an intuitively appealing treatment
of the expectation formation issue. They consider a cobweb model that has
agents choose a predictor from a Hnite set of expectations functions that are
themselves functions of past information, with each predictor assigned a cost
for its use.
To illustrate how the general expectation mechanism can generate local in-

stability and complex global dynamics, they devote considerable attention to
the case of the model with only rational (which is costly) and naive (which
is costless) expectations. In this illustration, which is central to their paper,
the system is assumed unstable under naive expectations. When price is far
from its steady-state value, the costs of using the rational predictor will be
outweighed by the (potential) beneHts of forming a more accurate forecast.
However, as the system returns to the steady state, both the sophisticated
and naive predictors return the same forecast. Because the costs will out-
weigh the beneHts, very few agents will use the sophisticated predictor and
the steady-state may become unstable. This approach presents a theoretical
underpinning to the more numerical analysis of Arthur et al. (1996).
Brock and Hommes (1997), however, do not fully capture the role played

by the predictor set. This paper shows that the set of predictors available
to choose from is an important determinant of the local stability criterion. It
will be shown that the inclusion of a predictor, even an unsophisticated one,
can counteract the in>uence of the naive predictor. As the size of the set
increases, the range of slope values and the intensity of choice under which
the steady state is locally stable will also increase.

1 The papers by Arifovic (1994), Sethi and Franke (1995), Anderson et al. (1997), and Stahl
(1993) look at similar issues utilizing genetic algorithms and evolutionary game theory. In these
approaches, expectations are not something calculated, but are outcomes of a ‘genetic’ process.
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To illustrate the main point of this paper consider the following thought
experiment under the Brock and Hommes assumption of two available pre-
dictors. Suppose that in time t price is close, but greater than, its steady-state
value and a large portion of agents use the naive predictor. Supply in t + 1
will be closely determined by the price in t because a disproportionate num-
ber of Hrms use that price as their forecast. Because of the oscillatory nature
of the cobweb model the actual price in t +1, as determined by the demand
curve, will be less than the steady-state price. Consequently, the price in
t + 2 will be greater than its steady-state value. Brock and Hommes (1997)
demonstrate that when the relative slopes of supply and demand are greater
than one, and the ‘intensity of choice’ between predictors is high enough,
this sequence will diverge.
This paper considers the ARED when there is a factor that dampens this os-

cillatory behavior of price. Allowing agents to choose another unsophisticated
predictor, such as adaptive expectations, provides such a factor. Adaptive ex-
pectations are a natural choice to include in the model because it can closely
resemble naive expectations or simple-averaging depending upon the size of
the adaption parameter. Adaptive expectations were also a mainstay of models
during the 1950s and 1960s. However, since adaptive expectations incorpo-
rate past information their in>uence seeks to dampen price oscillations. The
results of this paper provide necessary and su8cient conditions for the damp-
ening factor to induce the sequence of prices to converge to the steady state.
When the cost of adaptive expectations is zero, these turn out to be equiv-
alent to placing a su8ciently large weight on past prices. What constitutes
su8ciently large depends on the slopes of supply and demand, the relative
costs of the predictors, and the ‘intensity of choice’ between predictors. When
the cost of adaptive expectations is positive, the range of parameters under
which the system is stable increases from the case of rational versus naive
expectations.
This paper thus shows that there are important issues not studied in the

general results given by Brock and Hommes (1997), such as how the charac-
teristics of the predictor set aKect the convergence conditions. This paper also
extends the results of the speciHc case of rational versus naive expectations
in Brock and Hommes (1997) by introducing a third important predictor. It
will be seen that not all of their stability results carry over to this case. Thus,
this paper enhances the results of Brock and Hommes (1997).
This paper proceeds as follows. Section 2 presents the cobweb model

with rationally heterogeneous expectations and introduces the case of rational,
naive, and adaptive expectations. Section 3 reviews the Brock and Hommes
(1997) model of rational versus naive expectations as a special case of the
model in Section 2. The main stability results for the model with rational,
naive, and adaptive beliefs are presented in Section 4. Finally, Section 5
consists of some concluding remarks.
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2. Cobweb model with heterogeneous expectations

This section turns to a speciHc example of the ARED. It will extend the
case of rational versus naive expectations that is the focus of Brock and
Hommes (1997) by introducing adaptive expectations. To make the results
comparable with that of the Brock and Hommes (1997) speciHc case, the
setup for the cobweb model with rational, naive, and adaptive expectations
will closely follow their model. The only change to their framework is the ad-
dition of a third choice predictor, adaptive expectations. This change, though
small, leads to signiHcant diKerences in results. The Brock and Hommes
(1997) model assumes the simplest possible form of the ARED: agents choose
between a perfect-foresight predictor (agents are able to perfectly predict next
period’s price) and a naive predictor (agents expect last period’s price to
prevail again). To extend these results, we assume that agents also choose a
predictor which is a geometrically weighted average of past prices.

2.1. The cobweb model

In the Brock and Hommes (1997) framework, supply decisions are made
by choosing that output which maximizes expected proHts subject to the
one-period production lag. That is,

max
q

Pe
t+1q− c(q); (2.1)

where c(q) is a cost function that is increasing in q. Price expectations are
formed by choosing a predictor from a set of predictor functions. Given this
heterogeneity in expectation formation, market supply is a weighted sum of
the supply decisions of the heterogeneous agents. The weights are simply the
proportion of agents using a speciHc predictor. That is, each agent chooses
Hj ∈ {H1; H2; : : : ; HK} where each predictor depends upon a vector of past

prices
→
Pt = (Pt; Pt−1; : : : ; P0). The fractions of agents using a given predic-

tor, nj; t(Pt;H(
→
Pt−1)); depends upon price, Pt , and the vector of previous

predictors H(
→
Pt−1) = (H1(

→
Pt−1); H2(

→
Pt−1); : : : ; HK(

→
Pt−1)). Therefore, market

equilibrium is given by the equation:

D(Pt+1) =
K∑

j=1

nj; t(Pt;H(
→
Pt−1))S(Hj(

→
Pt)); (2.2)

where D(·) is the demand function and S(·) is the supply function.
Because of the nature of the belief dynamics, the equilibrium equations for

the cobweb model tend to be complicated. To keep the model analytically
tractable, assuming linear demand and supply is important. Therefore, let
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demand and supply be given by the functions:

D(Pt) = A− BPt;

S(Hj(
→
Pt)) = bHj(

→
Pt); A; B; b ∈ R+: (2.3)

Without loss of generalization to the stability properties, set A equal to zero.
Market equilibrium when Hj ∈ {H1; H2; H3} is determined by the condition

D(Pt+1) = n1; tS(H1(
→
Pt)) + n2; tS(H2(

→
Pt)) + n3; tS(H3(

→
Pt)); (2.4)

where the predictor functions are deHned as 2

H1(
→
Pt) = Pt+1 with cost C ≥ 0; (2.5)

H2(
→
Pt) = Pt with no cost;

H3(
→
Pt) = (1− �)

t∑
k=0

�kPt−k ≡ Rt with cost D ≥ 0; 0¡�¡ 1:

To keep the third predictor well-deHned, we will always assume that � is
strictly less than one.
Each period, after observing the new price and assessing the accuracy of

their forecasts, producers update their prediction of next period’s price. The
evolution of the proportions of agents using a particular predictor is given by

nj; t+1 =
exp[�Uj; t+1]∑K
j=1 exp[�Uj; t+1]

: (2.6)

Uj; t+1 is a measure of the welfare associated with a certain predictor. The
variable � parameterizes preferences over proHts. The larger the �, the more
likely a producer will switch to an expectation with slightly higher returns.
Brock and Hommes call this the ‘intensity of choice’ parameter. Assume that
Uj; t+1 is net realized proHts such that

Uj; t+1 = �j(Pt+1;H(
→
Pt)); (2.7)

where �j(Pt+1;H(
→
Pt)) = Pt+1S(Hj(

→
Pt))− c(S(Hj(

→
Pt)))− Cj. Cj is the Hxed

cost associated with Hj. 3

2 These predictions are equivalent to agents only considering the Hrst moment of the price
distribution. Though not explicit in Brock and Hommes (1997), underlying this structure is an
assumption of risk neutrality. Assuming risk-aversion could possibly introduce second moments
since E(�(P)) ≤ �(E(P)) when agents are risk-averse.

3 In the general setup of this model, Brock and Hommes (1997) assume a more general form
of Uj; t+1. This form is a weighted average of past proHts. Their general results, and Theorem
1 below, are based on this more general form of Uj; t+1.
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The cost of production is a simple quadratic cost function c(q) = q2=2b.
The proHt functions for Hrms using certain predictor functions are

�1(Pt+1; Pt+1) =
b
2
P2

t+1 − C; (2.8)

�2(Pt+1; Pt) =
b
2
Pt(2Pt+1 − Pt);

�3(Pt+1; Rt) =
b
2
Rt(2Pt+1 − Rt)−D:

Then plugging (2.8) into (2.6) leads to the laws of motion for the various
predictors:

n1; t+1 =
exp[�((b=2)P2

t+1 − C)]
Zt+1

; (2.9)

n2; t+1 =
exp[�((b=2)Pt(2Pt+1 − Pt))]

Zt+1
;

n3; t+1 =
exp[�((b=2)Rt(2Pt+1 − Rt)−D)]

Zt+1
;

where Zt+1 =
∑3

j=1 exp[��j; t+1].
A convenient transformation will lower the system’s dimension and sim-

plify the analytic solution. Let xt+1 =n1; t+1−n2; t+1−n3; t+1 and yt+1 =n2; t+1−
n3; t+1. Then it can be shown that

xt+1 = tanh
[
�
2

(
b
2
((Pt+1 − Pt)2 − Rt(2Pt+1 − Rt))− (C −D)

)]
; (2.10)

yt+1 = tanh
[
�
2

(
b
2
(Rt − 2(Rt − Pt)Pt+1 − P2

t ) +D
)]

:

The Hrst equation in (2.10) deHnes the diKerence between the proportions
of agents choosing rational beliefs and the proportions choosing naive or
adaptive beliefs. Similarly, the second equation in (2.10) describes how the
diKerence between the proportions of naive and adaptive evolves over time.
If xt+1 = 1 (−1), then the population has all (no) sophisticated agents.

The cobweb model with rational, naive, and adaptive expectations is a sys-
tem of (non-linear) diKerence equations that governs the dynamics of price,
the geometric weighted average of past prices, the excess proportion of so-
phisticated agents, and the excess proportion of naive agents. Notice that the
weighted average can be re-written as

Rt+1 = (1− �)Pt+1 + �Rt: (2.11)
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The equilibrium for the system can be found by plugging (2.3) and (2.5)
into (2.4) and solving for Pt+1. Hence, the equilibrium is

Pt+1(�t) =
−b((2yt − xt + 1)Pt + (1− 2yt − xt)Rt)

4B+ 2b(1 + xt)
;

Rt+1(�t) =
−b(1− �)((2yt − xt + 1)Pt + (1− 2yt − xt)Rt)

4B+ 2b(1 + xt)
+ �Rt;

xt+1(�t) = tanh
[
�
2

(
b
2
(k(�t)− Rtl(�t))− (C −D)

)]
;

yt+1(�t) = tanh
[
�
2

(
b
2
(m(�t)− P2

t ) +D
)]

;

where

�t = (Pt; Rt; xt ; yt);

k(�t) =
(−b((2yt − xt + 1)Pt + (1− 2yt − xt)Rt)

4B+ 2b(1 + xt)
− Pt

)2

;

l(�t) =
(−b((2yt − xt + 1)Pt + (1− 2yt − xt)Rt)

4B+ 2b(1 + xt)
− Rt

)
;

m(�t) =
(
R2

t −
b
2
(Rt − Pt)

)
(2yt − xt + 1)Pt + (1− 2yt − xt)Rt

4B+ 2b(1 + xt)
:

�t+1 =  (�t) ≡ (Pt+1(�t); Rt+1(�t); xt+1(�t); yt+1(�t)) is a system of (non-
linear) diKerence equations deHned by the equilibrium equations for Pt; Rt;
xt ; yt .

3. A digression on the cobweb model with rational versus naive expectations

The model in Section 2 represents the cobweb model of Brock and Hommes
(1997) with rational versus naive expectations whenever n3; t and � are set to
zero. Therefore, this model can be seen as a more general case of the ARED
than the stylized example of Brock and Hommes (1997).
In addition to the stylized example, Brock and Hommes (1997) also present

some general results of the ARED. They show that in a cobweb model that
has the steady state locally unstable when all agents use the cheapest pre-
dictor, then for su8ciently large � the steady state of the ARED is locally
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unstable. This result shows that if the preference for higher proHts is large
enough then the steady state will be unstable. 4 It is important to note that
there must exist some ordering to predictor costs that has costs higher for
non-naive predictors—a stabilizing and destabilizing predictor cannot cost the
same. This distinction will become clear in the cobweb model with rational,
naive, and adaptive expectations. This result does not indicate, though, that
how large � needs to be for instability depends critically on the set of predic-
tors available. Later results will show that another unsophisticated predictor
available to agents will increase the critical �.
The Brock and Hommes (1997) principal results for their stylized example

are given in Theorem 1. Note that in the simple two-dimensional case of
the model the unique steady state is E = (0; Qx(�)) = (0; tanh(−�C=2). The
assumption that b=B¿ 1 is equivalent to assuming that the steady state is
unstable when n2; t = 1.

Theorem 1. Assume that the slopes of supply and demand satisfy b=B¿ 1.

(i) When the information costs C=0; the steady state E=(0; 0) and it is
always globally stable.

(ii) When the information costs C ¿ 0; then there exists a critical value
�1 such that for all 0 ≤ � ≤ �1 the equilibrium is globally stable; while
for �¿�1 the equilibrium is an unstable saddle point with eigenvalues
0 and #(�) = [− b(1− Qx(�))]=[2B+ b(1 + Qx(�))]¡− 1. At the critical
value �1 the steady-state value is Qx(�) =−B=b.

(iii) When the steady state is unstable; there exists a locally unique period 2
orbit {(p̃; x̃); (−p̃; x̃)}; with x̃=−B=b and p̃ the unique positive solution
of tanh[�=2(2bp̃2 − C)] = −B=b. There exists a �2 ¿�1 such that the
period 2 cycle is stable for �2 ¿�¿�1. 5

Remark 1. Though not explicitly mentioned by Brock and Hommes, the
steady state with C ¿ 0 is locally and globally stable for all � whenever
b=B¡ 1. This result is easily seen in the proof to Theorem 1(ii) and is a
direct consequence of the fact that the steady state is locally stable under
naive beliefs when b=B¡ 1.

Theorem 1 demonstrates that there are two driving forces behind the dy-
namics of the steady state in the cobweb model with rational and naive
expectations. The Hrst force is the cost of rational expectations. Whenever
the perfect foresight predictor is costless (C = 0) the steady state is stable,

4 The formal description of this result, and the necessary regularity conditions, are given in
Brock and Hommes (1997, Theorem 2:2).

5 See Brock and Hommes (1997) for a more detailed discussion and proof of this theorem.
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with agents evenly divided between the two predictors. When rational ex-
pectations are costly, however, the steady state may no longer be stable. In
this case, how quickly agents react to changes in proHts govern the conver-
gence of the dynamics. When agents are more responsive to higher proHts
(corresponding to large values of �), the steady state will be unstable. This
paper is concerned with how these instability properties can be dampened
by adaptive expectations. The Brock and Hommes results seem to indicate
that it is only necessary to have a cheap destabilizing predictor and a costly
sophisticated predictor. But, in the next section it will be clear that this is
not the case. The array of predictors available, and their cost properties, are
also important determinants, and as the number of predictors increases, the
stability properties may increase as well.

4. Main results

Before turning to the main results, Hrst note the following deHnitions.

De,nition 1. A steady state of the ARED is a Hxed point Q� s.t. Q�=  ( Q�).

De,nition 2. A steady state, Q�, of the ARED is locally asymptotically stable
if ∃%¿ 0 s.t ‖ �t − Q� ‖→ 0 as t → ∞ whenever ‖ �0 − Q� ‖ ¡%, all s ≥ 0.

The main stability results of the steady state are given in several theorems,
with the proofs contained in the appendix.

4.1. Basic stability results

The basic stability results are given in the following theorem. This theorem
considers when adaptive expectations are both costless and costly.

Theorem 2. Assume b=B¿ 1 and C ≥ D ≥ 0. In the cobweb model with
rational; naive; and adaptive expectations; there is a unique steady state
de,ned by E = (0; 0; Qx(�); Qy(�)) with Qx(�) = tanh(−�(C −D)=2) and Qy(�) =
tanh(�D=2). Further; the steady state has the following properties.

(a) When C=0; D=0; Qx= Qy=0 and the steady state is locally asymptotically
stable.

(b) When C ¿D¿ 0∃�′ such that the steady state is an unstable saddle
point ∀�¿�′.

Theorem 2 gives the conditions for local stability of the unique steady state
for various orderings of the cost structure. Part (a) shows that the steady
state is always locally stable whenever the cost to the perfect foresight and
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adaptive predictor is zero. Part (b) shows that if the cost ordering is consistent
with Theorem 1(ii) then the steady state is an unstable saddle point for large
enough �. Theorem 2(b) demonstrates that with positive costs to all predictors
other than the naive predictor, the steady state may be locally unstable when
it is unstable under the cheapest predictor. Such a result is similar to that
of the Brock and Hommes (1997) general result. Both Theorem 1(ii) and
Theorem 2(b) suggest that as long as there is some monotonic ordering of
costs, the steady state may be an unstable saddle point.
These are essentially the same stability results in the simple example con-

sidered by Brock and Hommes (1997). When all predictors are costless the
steady state is locally asymptotically stable. Once there is a strict ordering to
costs, this local stability may no longer hold for a large enough intensity of
choice parameter �. This result does not indicate, though, how � depends on
the array of available predictors. To see how the addition of adaptive expec-
tations aKects the instability conditions the following corollary compares the
critical � in this case to the critical � in the Brock and Hommes model.

Corollary 3. Let �1 be the critical value in Theorem 1. Assume C ¿D¿ 0.
Consider the cobweb model with rational; naive; and adaptive expecta-
tions when b=B¿ 1. For D suAciently small there exists �̃(b; B; �; C;D) and
�2 ¿�1 so that whenever �¡�2 and �¿ �̃ the steady state is locally stable.
If �¿�2 the steady state is locally unstable for all 0 ≤ � ≤ 1.

Corollary 3 states that the Brock and Hommes critical value, �1, leads to a
stable steady state whenever � is su8ciently close to one. How ‘su8ciently’
is deHned depends on the exact values of b, B, and �. However, for a larger
critical value, �2, the additions of adaptive expectations does not induce sta-
bility for any value of �. This is because when �¿�2, �̃¿ 1. Corollary
3 shows that it is not � alone that determines the stability of the steady
state. While it is true for some large enough � that the steady state becomes
unstable, the Brock and Hommes (1997) general result does not give any in-
dication as to how this critical � changes as the predictor set changes. Their
results (Theorem 1) show that when � is large enough the steady state will
become unstable for any arbitrary positive cost to the sophisticated predictor.
However, for that � which induced instability in the rational versus naive
case, if D is small enough, and � is su8ciently close to unity, then the case
with rational, naive, and adaptive beliefs will be stable. The cost D should be
small since adaptive expectations are fairly unsophisticated, and could even
be set arbitrarily close to zero, the cost of naive expectations. These results
show that there is an interplay between costs, the ‘intensity of choice’ param-
eter, the adaption parameter on past prices, and the relative slopes of supply
and demand which, in the end, determine the convergence properties of the
dynamical system.
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Fig. 1.

Fig. 1 illustrates the results of Corollary 3. It shows in (�; �) space, the
stable and unstable regions described in Corollary 3. The graph is drawn
for C = 1; D= 0:5, and b=B= 3. Here �̃(b; B; �; C;D) = min{�1; �2} where the
functions �1, �2 are deHned in the proof to Theorem 2. The value of �2 is
given by �̃(b; B; �2; C; D) = 1. 6 The area above the curve �1 represents all
of the (�; �) combinations in which the steady state is locally asymptotically
stable when �1= �̃(b; B; �; C;D), i.e. �1 ¡�2. Similarly, the curve �2 represents
the (�; �) combinations for which the steady state is locally stable when
�2 = �̃(b; B; �), that is, when �2 ¡�1. Notice that some of the stability region
lies above � = 1, an area of infeasibility. The area below both lines are all
of the (�; �) pairs in which the steady state is locally unstable. The stability
region for Brock and Hommes is � ≤ �1. In the model with rational, naive,
and adaptive expectations, a su8cient amount of weight must be placed on
past prices to induce stability. This graph clearly illustrates that a larger � is
necessary to preserve stability under larger values of �.
Again, the intuitive justiHcation for this result is as follows. The cobweb

model with naive beliefs when the equilibrium is away from the steady state
has price switching from positive to negative every other period. Larger val-
ues of � make this oscillation more acute. It is this dynamic process that

6 The graph in Fig. 1 shows �1(b; B; �2; C; D)¿�2(b; B; �2; C; D). Depending on the parameter
values, �1(b; B; �2; C; D)¡�2(b; B; �2; C; D) could also hold.
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leads to explosive oscillation under the conditions of Brock and Hommes.
With rational expectations, irregular switching takes place as the net bene-
Hts of sophistication oscillate as well. The addition of adaptive expectations
introduces a dampening eKect that helps reduce these oscillations and under
conditions mentioned above, guides the system back towards the steady state.

4.2. Stability results under costless adaptive expectations

This subsection examines the stability conditions when D=0, that is, when
adaptive expectations are costless. This is an interesting case because without
a natural metric on sophistication one could argue that adaptive expectations
are equally costless as naive expectations.
Before stating Theorem 4 we introduce the following notations:

Qx(�) = tanh
(−�(C −D)

2

)
;

Qy(�) = tanh
(
�D
2

)
;

�̂(b; B; �; C;D) = min(S(b; B; �; C;D); V (b; B; �; C;D));

where

S(b; B; �; C;D) =
2b(1− Qx(�))

4B+ b(3 + Qx(�))
;

V (b; B; �; C;D) =
a1(b; B; �)a2(b; B; �)− a3(b; B; �)− a4(b; B; �)
a3(b; B; �) + a4(b; B; �)− a1(b; B; �)a5(b; B; �)

;

a1(b; B; �) = (4B+ 2b(1 + Qx(�))); a2(b; B; �) = (4B+ b(1 + 3 Qx(�)));

a3(b; B; �) = 4bB(1− Qx(�)); a4(b; B; �) = 2b2(1− Qx(�))(1 + Qx(�));

a5(b; B; �) = (4B+ b(3 + Qx(�))):

Theorem 4. Assume that b=B¿ 1 and C ¿D=0. In the cobweb model with
rational; naive; and adaptive expectations there is a unique steady state
de,ned by E = (0; 0; Qx; 0) and it is locally asymptotically stable if and only
if �¿ �̂(b; B; �; C;D).

Theorem 4 gives the necessary and su8cient conditions for the steady state
to be stable when the perfect foresight predictor has a positive cost of C, but
the adaptive predictor is still costless. For certain values of �, the condition
for stability may require the impossible; that is, stability cannot occur since
the condition requires �¿ 1.
The following lemma gives a more intuitive description of how �̂ depends

on b=B and �, and it will be utilized in the proofs of the subsequent corol-
laries.
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Lemma 5. If b=B¡ 2; then S ¿V for suAciently large �. If b=B¿ 2; then
V ¿S for suAciently large �.

Proof. Let � → ∞. Since

Qx → −1; S → 4b
4B+ 2b

; V → 16B2 − 16bB
−16B2 :

S ¿V ⇔ b
B

(
b
B
− 1

)
¡ 2:

The last condition is satisHed whenever b=B¡ 2.

The necessary and su8cient condition given in Theorem 4 depends on the
relative slopes and the ‘intensity of choice’ parameter. Whenever � is large,
and b=B is not too far into the unstable cobweb region (i.e. (1;∞)), then
�¿S is the necessary and su8cient condition for local asymptotic stability.
Conversely, when b=B is further into the unstable region, �¿V is the con-
dition. The parameter � is important because it, along with b=B, aKects the
size of S and V .
The following corollary gives greater insight into when the stability con-

ditions are satisHed.

Corollary 6. Assume that C ¿ 0 and D=0. Consider the cobweb model with
rational; naive; and adaptive expectations. The steady state E = (0; 0; Qx; 0)
is locally asymptotically stable for all suAciently large � if b=B¡ 2 and
�¿b=B− 1.

Proof. Suppose � → ∞, then Qx → −1. By Lemma 5 if b=B¡ 2 then S ¿V .
Hence, by Theorem 4 local asymptotic stability of the steady state is given by
the condition �¿b=B − 1. When b=B¡ 2 there exists a 0¡�¡ 1 that will
satisfy this condition. Hence, the steady state is locally stable for b=B¡ 2
and �¿b=B− 1 for all � su8ciently large.

Corollary 6 gives the conditions under which the steady state with C ¿ 0;
D = 0 is locally stable even when � is large; it shows that for large �,
large enough �, and small enough relative slopes of supply and demand the
steady state will be locally stable. This result is a departure from Brock and
Hommes.
Corollary 6 addresses the stability issue when b=B¡ 2. A natural question

is what happens when b=B ≥ 2. Because of the analytical complexity of this
case, we present a numerical analysis. Fig. 2 considers a particular numerical
parameterization to examine the stability conditions for a variety of relative
slope values; that is, Fig. 2 illustrates the results of Theorem 4. It plots the
stability condition �̂(b; B; �; C;D) as a function of b=B, with � = 20, C = 1,
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Fig. 2.

D = 0. The value for � was chosen so that b=B = 2 is the switching point
for whether S or V is the minimum of �̂(b; B; �; C;D). Corollary 6 shows,
and Fig. 2 illustrates, that when b=B¡ 2 and if �¿V = �̂(b; B; �; C;D) then
the steady state will be locally stable. When b=B ≥ 2 we have �̂ = S, and
Theorem 4 shows that for �¿S = �̂(b; B; �; C;D) the steady state will be
locally stable. The Hgure also shows that for a su8ciently large, Hxed �, the
steady state will become unstable for all � as b=B increases beyond 2. This
demonstrates that the addition of adaptive expectations increases the range of
slope values for which the steady state is locally stable. However, for large �,
as the slope values increase, the steady state will become unstable regardless
of how much adaptive expectations dampen past prices..
Our result is surprising given that Carlson (1968) and Auster (1971) who

show that the cobweb model is invariably stable under simply-averaged ex-
pectations. Simply-averaged expectations is equivalent to the case of large �
in this model. Unlike Carlson (1968) or Auster (1971), in our framework
the steady state is not invariably stable even when � is large. The presence
of naive beliefs as a choice possibility can lead to divergent dynamics. For
larger values of b=B and �, the steady state may be locally unstable for large
�. For a range of ‘unstable’ slope values, if the adaption parameter is large
enough the steady state will be locally stable. Predictor choice can stabilize
or destabilize depending on the set of predictors and the market conditions.
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That the slope condition for instability becomes larger with adaptive expec-
tations is one of the principal implications of Theorem 4. The local stability
conditions depend on the selection of predictors. Intuitively, the addition of
another predictor lowers the weight, in a steady state, placed on the other pre-
dictors. In the neighborhood of a steady state, naive expectations will have
less eKect on equilibrium price than even before agents could choose adaptive
expectations. Since they have less in>uence the critical ‘intensity of choice’
must increase.
Note that the Brock and Hommes model of rational versus naive expecta-

tions is a special case of this model. For this reason adaptive expectations are
a natural choice for inclusion in a model of rationally heterogeneous expec-
tations. Depending on the size of �, this model could be the case of rational
versus naive expectations, rational versus simply-averaged expectations, or
something in between. This paper shows that the latter two cases have inter-
esting properties. The cobweb model with rationally heterogeneous expecta-
tions tends to be stable under more cases than Brock and Hommes’ (1997)
implies, but when these cases arise depends on a complex set of conditions.

4.3. Rational versus adaptive expectations

The previous results indicate that the mix of predictors available to agents
is important for system stability. This subsection investigates what happens
when there are two choices of predictors available to agents and both tend
to be stabilizing.
First, however, the following theorem examines steady-state stability when

n3; t = 1∀t, in order to see that adaptive expectations are stabilizing. That
is, when agents can only use adaptive expectations, the steady state will be
locally asymptotically stable when su8cient weight is placed on past prices.

Theorem 7. Assume b=B¿ 1. The steady state E = (0; 0) of the cobweb
model with adaptive expectations is locally asymptotically stable ∀�¿ 0
whenever

�¿
(b=B)− 1
1 + (b=B)

:

The following result gives the stability conditions when agents choose be-
tween a costly rational predictor and a costless adaptive predictor. For the
case of rational and adaptive beliefs, the model is modiHed by setting n2; t=0
and Zt = exp��1; t + exp��3; t .

Theorem 8. Assume b=B¿ 1 and C ¿D=0. In the cobweb model with ra-
tional and adaptive expectations and a suAciently large intensity of choice,
there is a unique steady state de,ned by E=(0; 0; Qx) and it is locally asymp-
totically stable if and only if �¿ 1− B=b.
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In both results, � must dampen su8ciently for local stability to hold. Note
that

1− B
b
¿

(b=B)− 1
1 + (b=B)

:

So those � for which the steady state is stable under homogeneous expecta-
tions, will also lead to stability under rationally heterogeneous expectations
when agents choose between rational and adaptive expectations. 7 As has been
seen before, adaptive expectations must weight the past strongly enough for
the stability conditions to be satisHed.

5. Concluding remarks

This paper has investigated a cobweb model with rationally heterogeneous
beliefs. The results extend and enhance those from the ARED of Brock and
Hommes (1997). The crucial diKerence between their model and the one
presented here is the addition of adaptive expectations. Adaptive expecta-
tions arguably should be included in a rationally heterogeneous model of
beliefs since they do require some memory on the part of agents and are
a method traditionally used in macroeconomics. By allowing for two types
of unsophisticated beliefs we have achieved two aims. First, an investigation
into the speciHcs of the belief switching mechanism, and how the interaction
between unsophisticated predictors aKects the local convergence properties.
Second, to create a more general example of the Brock and Hommes model
that, depending upon the strength of agents’ beliefs, could have naive or
simply-averaged expectations as special cases, and still allow for analysis of
the system’s dynamics.
The results of this paper can be summarized as follows:

1. When adaptive expectations are a second unsophisticated choice that is
costless, the steady state may be locally asymptotically stable, for Hxed
values of the ‘intensity of choice’ parameter, when agents’ memories are
su8ciently strong.

2. When adaptive expectations are a second unsophisticated choice that is
costly, the steady state will be an unstable saddle point for a large ‘intensity
of choice’ between predictors. The adaptive predictor, though, can increase
the ‘intensity of choice’ at which the steady state switches from a stable
steady state to an unstable saddle point.

7 Note that the opposite results are also possible by adding naive expectations to the model
of rational and adaptive beliefs. In this case, the presence of naive expectations will tend
to destabilize the system. This underscores the main message of this paper: the addition of
stabilizing predictors will tend to make the system ‘more stable’.
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3. When agents choose between two predictors, an expensive sophisticated
predictor (perfect foresight) and a cheap unsophisticated predictor (adap-
tive expectations), the steady state is locally asymptotically stable when
the adaption parameter is large enough. The ‘intensity of choice’ has no
eKect on the stability conditions in this case.
Adaptive expectations may create a more stable environment if the adaption

parameter is large enough. The results in this paper clearly indicate that the
cobweb cycling that has price oscillating around its steady state is dampened
when agents may also choose adaptive expectations with strong dampening.
Section 4 gave the conditions under which the sequence of prices will con-
verge to the steady state. Thus, this paper shows that predictor choice is
important for the exact form of the stability properties in a way not cov-
ered by the general result of Brock and Hommes. However, the results also
lend support to the Brock and Hommes (1997) assertion that predictor choice
leads to market instability for some range of slope values, and parameter val-
ues. What these ranges are depends upon the array of predictors available to
agents.
When agents choose between an expensive perfect foresight predictor and

a cheap adaptive predictor, the conditions for convergence are more general
than considered by Carlson (1968) and Auster (1971). Thus, the choice, and
subsequent predictor switching, can have a stabilizing in>uence. It is possible
to add a choice, which is not the cheapest one, but which (for some �)
will stabilize a system which is unstable under Brock and Hommes (1997)
example.
Finally, the results presented in Section 4 allow us to conjecture as to

what happens when the choices available to agents increase. It was seen
that increasing the predictor choices from two to three tended to stabilize
the steady state so long as the added choice is stabilizing. As the choice
set increases further, and the weight placed on the de-stabilizing predictor
decreases, the bounds on which the steady state is stable may also increase.
But, as mentioned above, how these bounds increase depends upon the make
up of the set of predictors and their cost characteristics. Future research should
investigate exactly how these stability properties will change as the predictor
choice set expands even further. This paper suggests that the parameter range
over which the system is stable will increase as the predictor set expands.
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Appendix A.

In this appendix the proof of the main theorems are presented.

Proof of Theorem 2. First consider the uniqueness of the steady state. The
steady state is found by setting for all time periods Pt = QP. Then solving
for the steady-state price QP in the equilibrium equations leads to the unique
steady-state price QP=0. By plugging this steady-state value into the remaining
dynamic equilibrium equations, it is easily seen that the steady state is unique.
To prove local stability it will be useful to linearize the system around the

corresponding steady state and show that the eigenvalues lie inside the unit
circle (see Theorem 6:5 in Stokey et al. (1989) or Theorem 6:2 in Azariadis,
1993). 8 Denoting f(�) ≡ Pt+1(�), i(�) ≡ Rt+1(�), g(�) ≡ xt+1(�), h(�) ≡
yt+1(�), the eigenvalues are

#1 =
1
2
{(fp + iR) +

√
(fp + iR)2 − 4fp(iR − (1− �)fp)}; (A.1)

#2 =
1
2
{(fp + iR)−

√
(fp + iR)2 − 4fp(iR − (1− �)fp)};

#3 = #4 = 0:

If all the eigenvalues in (A.1) lie inside the unit circle then local asymptotic
stability holds. This condition is clearly satisHed for #3, #4, so it only remains
to check that the condition is satisHed for #1; #2. Note Hrst that fp=−b=(4B+
2b) and iR = [ − (1 − �)b]=(4B + 2b) + �, and that the eigenvalues are real
whenever �¿ 0.
We want to show that |#1|; |#2|¡ 1, which, since |a + b| ≤ |a| + |b|, is

equivalent to√
(fp + iR)2 − 4fp(iR − (1− �)fp)¡ (2− |fp + iR|): (A.2)

There are two cases to consider: (i) fp + iR ¿ 0; (ii) fp + iR ¡ 0.
Consider case (i). |#1|, |#2|¡ 1 is equivalent to (rewriting (A.2) and as-

suming (i))

fP(1− iR) + f2
P(1− �)¡ 1− iR:

Since |iR|¡ 1, |#1| ,|#2|¡ 1 can be established if

f2
P(1− �)¡ 1− iR ⇔ −b(1− �)

4B+ 2b
¡ 0:

Therefore, |#1|, |#2|¡ 1 for fp + iR ¿ 0.

8 See LaSalle (1986) for an excellent mathematical treatment of discrete dynamical systems.
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Now consider case (ii): fp + iR ¡ 0. |#1|, |#2|¡ 1 is equivalent to

�¿
−8bB− 16B2

(4B+ 3b)(4B+ 2b)− (4bB+ 2b)2
: (A.3)

This last condition is always satisHed since 0¡�¡ 1. The steady state,
then, is locally asymptotically stable (see Theorem 6:2 in Stokey et al. 1989).
The proof of part (b) follows the same as for part (a). Note Hrst that when

D¿ 0 then Qn2 ¿ 0: Linearizing the system around E=(0; 0; Qx(�); Qy(�)) leads
to the eigenvalues,

#1 =
1
2
{(fp + iR) +

√
(fp + iR)2 − 4fp(iR − (1− �)fR)}; (A.4)

#2 =
1
2
{(fp + iR)−

√
(fp + iR)2 − 4fp(iR − (1− �)fR)};

#3 = #4 = 0:

It can be easily veriHed that all of the eigenvalues are real numbers, and that
(fp+iR)2 ¿ 4fp(iR−(1−�)fR). Again, there are the two cases: (i) fp+iR ¿ 0;
(ii) fp + iR ¡ 0.
Begin with case (i). |#1|, |#2|¡ 1 is equivalent to

(1− �)fPfR ¡ (1− fP)(1− iR): (A.5)

It can be shown (A.5) holds everywhere. However, this condition will only
be valid for

fp + iR ¿ 0 ⇔ �¿
2b(1− Qx(�))

4B+ b(3 + Qx(�)− 2 Qy(�))
≡ �1(b; B; �; C;D):

(A.6)

But, as � → ∞ (A.6) is only feasible (i.e. 0¡�¡ 1) for b
B ¡ 1. |#1|, |#2|¡ 1

does not hold when fp + iR ¿ 0: We remark that �1 depends on C and D via
Qx(�) and Qy(�).
Now consider case (ii).

|#1|; |#2|¡ 1 ⇔ −fP(1 + iR) + (1− �)fPfR ¡ 1 + iR ⇔ (A.7)

�¿
1− fPfR + f2

P + 2fP

(fP + 1)(fP − 1)− fPfR
≡ �2:

It can be easily veriHed that as � → ∞, �2 ¿ 1. Hence, for su8ciently large
�, there is an unstable saddle point with real eigenvalues.
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Proof of Corollary 3. We will prove this result by Hrst examining stability
when � is Hxed at the critical value that induces instability in Brock and
Hommes (1997). Then we will show that for some larger value of � the
model with rational, adaptive, and naive expectations will turn unstable.
Fix �=�1 s.t. Qx(�1)=tanh(−�1(C−D)=2)=−(B=b)+-¿ (−B=b). Reexamine

the stability argument from the above theorem. From the above proof, the
relevant stability condition is �¿ �̃(b; B; �; C;D) = min{�1; �2}. We want to
show that when � = �1 there exists a � ∈ (0; 1) that satisHes this condition.
Without loss of generality, plug in Qx(�1) = (−B=b) + - into �1

�¿
2b(1 + (B=b)− -)

4B+ b(3− (B=b) + -− 2 Qy(�1))
: (A.8)

There exists such a � ∈ (0; 1) whenever,

Qy(�1)¡
(b+ B)

2b
+

3
2
-: (A.9)

Note that as D → 0, Qy(�1) → 0, and since Qy(�) is continuous in D, ∃D¿ 0
s.t. condition (A.9) is satisHed. Hence, for � ≤ �1 and �¿ �̃(b; B; �; C;D) the
steady state is locally asymptotically stable.
The second step is to show that ∃�2 ¿�1 s.t. the steady state is locally

stable (unstable) ∀�¡�2(¿�2). Suppose �2 ¿�1 and �2 is deHned such that
Qx(�2) = tanh(−�2(C −D)=2) =−B=b. The stability condition will be satisHed
for some � when

2y(�2)¡
1 + B=b

2
: (A.10)

Again y(�) → 0 as D → 0. So ∃�2 ¿�1 such that the steady state is locally
asymptotically stable. By Theorem 2, if we increase � su8ciently the steady
state will become unstable.

Proof of Theorem 4. To prove local stability in this case simply reevaluate
the Jacobian at the steady state E = (0; 0; Qx(�); 0), and check that the eigen-
values lie inside the unit circle. The only diKerence in the Jacobian from part
(a) to Theorem 2 is that

fp =
−b(1− Qx(�))

4B+ 2b(1 + Qx(�))
and iR =

−(1− �)b(1− Qx(�))
4B+ 2b(1 + Qx(�))

+ �:

Again, from above,

|#1|; |#2|¡ 1 ⇔ (fp + iR)2 − 4fp(iR − (1− �)fp)¡ (2− |fp + iR|)2:
(A.11)

which in turn has two cases: (i) fp + iR ¿ 0; (ii) fp + iR ¡ 0.
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Consider case (i).

|#1|; |#2|¡ 1⇔−4bB− 2b2 − 2b2 Qx(�)¡ 16B2 + 4bB(5 + 3 Qx(�))

+2b2(3 + 4 Qx(�) + Qx(�)2):

The left-hand side of the last condition is negative, and the right-hand side
is positive. Therefore, |#1|, |#2|¡ 1 whenever fp + iR ¿ 0; or �¿ [2b(1−
Qx(�))]=4B+ b(3 + Qx(�)). Hence, the condition �¿S.
Now consider case (ii).

|#1|; |#2|¡ 1 ⇔ −fP(1 + iR) + (1− �)f2
P ¡ 1 + iR: (A.12)

⇔ �¿
(4B+2b(1+ Qx(�)))(4B+b(1+3 Qx(�)))−4bB(1− Qx(�))−2b2((1− Qx(�))(1+ Qx(�)))
4bB(1− Qx(�))+2b2((1− Qx(�))(1+ Qx(�)))−(4B+2b(1+ Qx(�)))(4B+b(3 + Qx(�)))

:

Hence, the condition �¿V . Therefore, for a su8ciently large adaption
parameter the steady state is locally asymptotically stable.

Proof of Theorem 7. Under the reduced system, the two eigenvalues are

#1 = 0; (A.13)

#2 = �− b
B
(1− �):

The condition for local stability is equivalent to∣∣∣∣�− b
B
(1− �)

∣∣∣∣¡ 1: (A.14)

There are two cases to consider: (a) �¡b=B(1− �); and, (b) �¿b=B(1− �).
Note that case (b) is relevant when �¿b=B=(1 + (b=B)).
Now consider case (a). Local stability holds when

�¿
b=B− 1
1 + (b=B)

(A.15)

Now consider case (b). Here stability of the steady state holds for all �¡ 1.
Since

b=B− 1
1 + (b=B)

¿
b=B

1 + (b=B)
;

then whenever

�¿
b=B− 1
1 + (b=B)

local asymptotic stability holds.
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Proof of Theorem 8. Fix n2; t=0; ∀t; and without a loss of generality assume
D = 0. (It is only necessary that C ¿D so that Qx(�)¡ 0). Under the new
steady state E = (P; R; Qx(�)) = (0; 0; Qx(�)) the eigenvalues are

#1 =
−b(1− �)(1− Qx(�))
2B+ b(1 + Qx(�))

; (A.16)

#2 = #3 = 0:

The steady state will be locally asymptotically stable whenever |#1|¡ 1, or

−(1− �)b Qx(�)− �b¡ 2B+ b Qx(�): (A.17)

Let � → ∞. Then |#1|¡ 1 if and only if �¿ (1−B=b). Hence, the steady state
is locally asymptotically stable for all values of � if the adaption parameter
is large enough.
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