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Abstract

This paper identifies two channels through which the economy can generate endogenous inflation and
output volatility, an empirical regularity, by introducing model uncertainty into a Lucas-type monetary
model. The equilibrium path of inflation depends on agents’ expectations and a vector of exogenous ran-
dom variables. Following Branch and Evans agents are assumed to underparameterize their forecasting
models [Branch, W., Evans, G.W., 2006a. Intrinsic heterogeneity in expectation formation. Journal of Eco-
nomic Theory 127, 264–295]. A Misspecification Equilibrium arises when beliefs are optimal, given the
misspecification, and predictor proportions are based on relative forecast performance. We show that there
may exist multiple Misspecification Equilibria, a subset of which is stable under least squares learning and
dynamic predictor selection. The dual channels of least squares parameter updating and dynamic predictor
selection combine to generate regime switching and endogenous volatility.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Time-varying volatility in inflation and GDP growth is an empirical regularity of the US econ-
omy. This observation is often described in the applied literature as a regime shift during the
1980s which resulted in a simultaneous decline in inflation and output volatility. The ‘Great
Moderation’, econometrically identified by Stock and Watson (2003) and McConnell and Quiros
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(2000), among others, is often associated with a change in the stance of monetary policy (e.g.
Branch et al., 2006).

However, recent studies by Cogley and Sargent (2005a) and Sims and Zha (2006) present
evidence that drifting and regime switching inflation and output volatility is a characteristic of
the post-war period. Since the Great Moderation consists of a one-time simultaneous decline
in volatility, and its timing coexists with changes in Federal Reserve policy, it seems natural to
seek policy explanations of this particular event. Persistently evolving inflation volatility may not
always go hand in hand with changes in Federal Reserve policy. In this paper, we demonstrate
that drift and regime switching in volatility may arise endogenously through model uncertainty.

Private sector expectations of future economic variables play a key role in most monetary
models (e.g. Woodford, 2003). In these self-referential models, agents’ beliefs feed back posi-
tively onto the underlying stochastic process. Yet, there is no consensus among economists on
how agents actually form their expectations. While Rational Expectations provides a natural
benchmark, there is a rapidly expanding literature, e.g. Marcet and Sargent (1989), Brock and
Hommes (1997), Sargent (1999), Evans and Honkapohja (2001), and Marcet and Nicolini (2003),
which replaces rational expectations with statistical learning rules. This alternative approach, it
is argued, is a reasonable description of agents’ actual forecasting acumen because it assumes
behavior consistent with econometric practice.

Branch and Evans (2006a), though, note that with computational costs and degree of freedom
limitations, econometricians often underparameterize their forecasting models. It has long been
recognized that Vector Autoregressive (VAR) models have degrees of freedom limitations. Re-
cent work by Chari et al. (2005) argue that these limitations present obstacles to VAR researchers
who try to uncover a model’s stochastic structure from observable time-series variables. The ap-
proach in this, and our earlier, paper is to model agents as VAR econometricians who behave
optimally given the restrictions imposed on them by the data. The previous paper, developed in
the context of the cobweb model, derived heterogeneity as an equilibrium outcome when agents
choose the dimension in which to underparameterize. The current paper revisits that approach,
instead framing the analysis in a standard Lucas-type monetary model.

We confront agents with a list of underparameterized predictor functions. The economic
model is self-referential in the sense that agents’ expectations, a function of their underparame-
terization choice, depends on the underlying stochastic process which, in turn, depends on these
beliefs. A Misspecification Equilibrium (ME) is a fixed point of this self-reinforcing process.
Model uncertainty arises in the sense that agents pick the best-performing statistical model. In
our framework, what constitutes the best performing model depends not only on the regressors
of the model, but also on the forecasting model choices of other agents. Of course, there are
other ways to treat model uncertainty, for instance uncertainty about parameters (Hansen and
Sargent, 2005) or about the form of the monetary policy rule. However, we believe that econo-
metric model uncertainty is an important component of agent behavior, and this paper studies its
implications.

There are two primary results in the current paper: first, when there are multiple underpara-
meterized models from which agents must choose one, there may exist multiple stable equilibria,
each with distinct stochastic properties; second, when agents must adaptively learn the forecast
accuracy of these models, the economy will generate endogenous variation in inflation and output
volatility.

This paper specifies a simple monetary model in which the reduced-form representations of
aggregate supply and aggregate demand depend on a vector of autoregressive exogenous dis-
turbances, representing preference and technology shocks, and supply additionally depends on
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unanticipated price level changes. Motivated by the idea that cognitive and computing time con-
straints and degrees of freedom limitations lead agents to adopt parsimonious models, we impose
that agents only incorporate a subset of these variables into their forecasting model. Following
Branch and Evans (2006a), we require that these expectations are optimal linear projections
given the underparameterization restriction and that agents only choose best performing statisti-
cal models. Despite the bounded rationality assumption, this remains in the spirit of Muth (1961)
in the sense that for each statistical model the parameters are chosen optimally. An equilibrium in
beliefs and the stochastic process is a Misspecification Equilibrium. An ME extends the notion of
a Restricted Perceptions Equilibrium, which arise in the models of Evans, Honkapohja, and Sar-
gent (1989), Evans and Honkapohja (2001), and Sargent (1999), to settings in which agents must
choose their models. We show that in the Lucas model there exist multiple ME and, moreover,
the ME with homogeneous expectations are stable under least squares learning.

One implication of our theoretical model is that in a real-time dynamic version of the model
agents must simultaneously estimate the parameters of their forecasting model and choose the
best model based on past experience. We show that when agents use least squares to estimate
the parameters of their statistical model, and base forecast performance on average mean-square
forecast error of the competing models, different Misspecification Equilibria, in each of which
agents coordinate on one forecasting model, can be stable.

Most interestingly, “constant gain” dynamics lead to new and distinct results. Constant gain
least squares algorithms place a greater (time-invariant) weight on more recent observations.
Constant gain (or “perpetual”) learning, has been studied, for example, by Sargent (1999), Cho
et al. (2002) and Orphanides and Williams (2005a), who argue for the plausibility of this form
of learning dynamics as a way in which agents would allow for possible structural change. In
this paper we extend this idea in an important way: learning jointly about model parameters
and model fitness. Model uncertainty arises via constant gain learning and dynamic predictor
selection.

Extending constant gain learning to incorporate dynamic predictor selection, we identify two
channels through which inflation and output volatility may evolve over time. The first channel is
from the parameter drift induced by constant gain updating of the forecasting model parameters.
Under constant gain learning, the parameters vary around their mean values, even if the economy
remains at a single equilibrium. In addition, regime switching in inflation and output volatility
can arise when the economy switches endogenously between high and low volatility equilib-
ria. Thus, the second channel is through dynamic predictor selection when agents react more
strongly to recent forecast errors than distant ones when assessing the fitness of a forecasting
model. Through numerical simulations, we show that, when there is dynamic predictor selection
and parameter drift, the dynamic paths of inflation and output are consistent with the empirical
regularities identified by Cogley and Sargent (2005a) and Sims and Zha (2006). These numerical
results should be thought of as a conceptual exercise rather than a realistic calibration. We argue,
however, that the channels identified in this paper are novel and that they warrant further study
to assess their relative contributions to explaining stochastic volatility.

Our paper builds upon Brock and Hommes (1997, 1998), who study dynamic predictor selec-
tion in deterministic models using a similar reduced form to the model used here.1 Branch and
Evans (2006a) extend Brock and Hommes to a stochastic environment in which, in equilibrium,

1 Evans and Ramey (1992) examined dynamic predictor selection when agents choose between naive forecasts and
more costly forecasts computed from a structural model.
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both the choice of forecasting model and the parameters of each predictor are determined simul-
taneously. In that paper, we show that an equilibrium can arise in which agents are distributed
heterogeneously across forecasting models. The contribution of the current paper is to demon-
strate the possibility of multiple equilibria in an economic model with positive expectational
feedback, and to show that dual learning in parameters and predictor selection can therefore
generate the type of dynamics arguably present in macroeconomic time series.

This paper proceeds as follows. Section 2 presents evidence of time-varying volatility in the
US economy. Section 3 presents the Lucas model with model uncertainty. Sections 4 and 5
consider the model under real-time learning. Section 6 concludes.

2. Inflation and output volatility in the US

2.1. An empirical overview

In the applied literature there is widespread consensus that during the 1980s there was a
decline in economic volatility. An array of econometric techniques to identify the regime shift
have been employed by Bernanke and Mihov (1998), Kim and Nelson (1999), Kim et al. (2004),
McConnell and Quiros (2000), Sensier and van Dijk (2004), and Stock and Watson (2003). Re-
cently, though, Cogley and Sargent (2005a) and Sims and Zha (2006) have identified repeated
regime shifting economic volatility in US inflation and GDP growth. While Cogley–Sargent and
Sims–Zha are interested in characterizing changing monetary policy over the period they make
a striking finding: during the post-war period there is persistent stochastic volatility in the econ-
omy.

Conventional macroeconomic models, however, are unable to generate persistent stochastic
volatility without directly assuming either exogenous disturbances following a Markov chain
or exogenous changes in policy. In this paper, we present a model capable of generating such
volatility endogenously via an adaptive learning and dynamic predictor selection process in a
setting where agents may choose between competing underparameterized forecasting models.
First, though, this section presents a brief, informal accounting of the nature of stochastic volatil-
ity in the economy.

Stochastic volatility is rigorously documented by Cogley and Sargent (2005a) and Sims and
Zha (2006). Our purpose here is motivation and overview; we refer the reader to these other
papers for formal econometric analysis. We detrend the log of real GDP using the Hodrick–
Prescott filter since in the Lucas model below output is expressed as a log deviation from its
trend value. Figure 1 plots conditional variances of inflation and (detrended) GDP for the period
1955:1–2004:2.

Owyang (2001) presents evidence that inflation follows an ARCH process. Figure 1 plots the
conditional variances from an ARCH specification for inflation and log GDP to demonstrate the
robustness of the finding that there is persistent stochastic volatility in both inflation and log GDP.
To compute the conditional variances in Fig. 1 we estimated a GARCH(1,1) for an AR(4) model
of inflation and log GDP. This follows exactly Owyang (2001) except that we also estimate a
GARCH model for the volatility of log GDP. Figure 1 then plots the conditional variances from
the GARCH models.2

2 Drifting and regime switching volatility is also evident in moving averages of unconditional variances as well as the
econometric approaches of Sims–Zha, Cogley–Sargent, Justiniano and Primiceri (2006), and Fernandez-Villaverde and
Rubio-Ramirez (2006).
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Fig. 1. Conditional variances from a GARCH(1,1) model of an AR(4) for inflation and log GDP. Sample 1955:1–2004:2.

Inspection of Fig. 1 demonstrates the ‘Great Moderation’ emphasized by McConnell and
Quiros (2000) and Stock and Watson (2003). About 1984 there was a simultaneous decline in the
volatility of inflation and GDP. This empirical feature has generated considerable recent research
into monetary policy’s role in bringing about the observed economic stability.3 Figure 1 also
demonstrates that the volatility of GDP and inflation varies over time. In particular, each series
appears to move in tandem and alternate between high and low variance regimes. Sims and Zha
(2006) find that 9 separate regimes fit the data best. This plot resembles the posterior mean

3 See, for example, Branch et al. (2006) and the references therein.
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estimates for the standard errors of the VAR innovations in Cogley and Sargent (2005a) over the
period 1960–2000.

2.2. Discussion

Despite the attention given the Great Moderation, there seems to be little emphasis in the
theoretical literature on accounting for the persistent stochastic volatility of the economy. Sims
and Zha (2006) seek evidence in a change in the stance of monetary policy repeatedly across
time. Sargent (1999) presents a theory of the rise and fall in inflation that is the result of drifting
beliefs on the part of the government.4 Orphanides and Williams (2005a) account for the decline
in volatility as a change in the stance of policy which pins down agents’ drifting beliefs.5

In this paper, we develop another possible explanation that does not require policy changes.
We present a model in which agents must choose between two alternative underparameterized
models. We demonstrate the possibility of multiple coordinating equilibria with distinct stochas-
tic properties across equilibria. We introduce model uncertainty by assuming that agents use
constant gain least squares to estimate the parameters of their forecasting model. This intro-
duces drifts into their beliefs as in Sargent (1999) and Orphanides and Williams (2005a). We
also augment the model to allow agents to choose their forecasting model in real time based on a
geometric weighted average of recent forecast performance. In this version of the model, agents
switch persistently and endogenously between forecasting models. This induces the economy to
switch between high and low inflation variance equilibria. Thus, we provide two possible sources
of stochastic volatility: drifting beliefs and endogenous predictor selection.

It should be emphasized that we do not in any way discount the role for other explanations
of persistent stochastic volatility, such as major shifts in macroeconomic policy. However, we do
feel that the channels identified here, developed in the context of a very simple and otherwise
well-behaved macroeconomic model, appear to be sufficiently powerful to merit serious empir-
ical investigation in future research. The empirical results here motivate the conceptual exercise
in Section 5. As such, we do not attempt to exactly replicate the conditional variances of Fig. 1.

3. Model

This section extends the Branch and Evans (2006a) cobweb model with misspecification to a
Lucas-type monetary model. In Branch and Evans (2006a) firms choose planned output based on
a misspecified forecasting model of the market price. Misspecification is modeled by confronting
agents with a list of underparameterized models. Agents do, however, forecast optimally in the
sense that they only choose the best performing statistical model. That paper establishes that,
under appropriate joint conditions on the self-referential feature of the model and the exogenous
disturbances, agents will necessarily be distributed heterogeneously across misspecified models.

Here we establish the existence of misspecification equilibria in a closely related Lucas-type
monetary model. Later sections will address the dynamics of learning and predictor selection.
Although the reduced form of the Lucas model is similar to the cobweb model, the slopes of the

4 Over a long stretch of time this would be expected to lead to periodic regime changes due to the ‘escape’ dynamics.
For further discussion see Cho et al. (2002).

5 Recently, Justiniano and Primiceri (2006) and Fernandez-Villaverde and Rubio-Ramirez (2006) estimate business
cycle models extended to incorporate stochastic volatility. Nevertheless, a theoretical channel to motivate the volatility
remains an open issue.
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two models have opposite signs. The negative feedback of the cobweb model plays a central role
in the existence of Intrinsic Heterogeneity. In the Lucas model the feedback from expectations
is positive. The reinforcing aspect of expectations induces coordination by agents and raises the
possibility of multiple equilibria. A striking feature of our results is that underparameterization
makes multiple equilibria possible in a well-behaved model that has a unique equilibrium under
fully rational expectations.

3.1. Set-up

The economy is represented by equations for aggregate supply (AS) and aggregate demand
(AD):

AS: qt = φ(pt − pe
t ) + β ′

1zt ,

AD: qt = mt − pt + β ′
2zt + wt

where pt is the log of the price level, pe
t is the log of expected price formed in t − 1, mt is

the log of the money supply, qt is the deviation of the log of real GDP from trend, wt is an
i.i.d. zero-mean shock, and z is a vector of potentially serially correlated disturbances with the
properties described below. The AS curve yields a new classical Phillips curve, which has a
venerable history in monetary economics, and has the same form as Lucas (1973), Kydland and
Prescott (1977), Sargent (1999), and Woodford (2003). The AD equation is a simple quantity
theory relationship.

The appendix provides one possible derivation of these reduced-form equations for AS and
AD from a micro-founded model of heterogeneous expectations. We assume a yeoman farmer
model along the lines of Woodford (2003): each farmer produces a differentiated good and sells
it in a monopolistically competitive market. Assuming a money in the utility function framework
yields a non-zero demand for money. Appendix A shows that in an economy with heterogeneous
expectations across agents, the competitive equilibrium allocations have a representation in the
reduced-forms above. The key assumption in this simple framework is that agents’ money de-
mand is interest inelastic yielding a quantity theory AD as shown in Walsh (2003). The purpose
of this paper is to demonstrate the implications for the time-series properties of inflation and
(detrended) GDP of learning and dynamic predictor selection. It would be interesting for future
research to examine our approach in other AD frameworks.

Assume that the money supply follows,6

mt = pt−1 + δ′zt + ut ,

zt = Azt−1 + εt .

We assume for simplicity that zt is (2×1) and εt is i.i.d. zero-mean with positive definite covari-
ance matrix Σε . The vector zt is also assumed to be a stationary process with the eigenvalues of A

inside the unit circle. The stochastic disturbance zt collects the serially correlated disturbances
that affect aggregate supply, aggregate demand, and the money supply. The vectors β1, β2, δ de-
termine which components of z affect the respective reduced form relationships via (possible)
zero components. The variable ut is a white noise money supply shock.

6 The form of the policy reaction function (implicitly) assumes the monetary authority does not observe pt , yt . This
simple policy rule was adopted by Sargent (1987) and Evans and Ramey (1992, 2006). When pt is observable at t , a
more general money supply rule is mt − pt = −(1 + ξ)πt + δ′zt + ut with ξ � 0. This leads to the same reduced form
as (1), with θ = φ/(1 + φ + ξ).
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Denoting πt = pt − pt−1 we can write the law of motion for the economy in its expectations-
augmented Phillips curve form

πt = φ

1 + φ
πe

t + (δ + β2 − β1)
′

1 + φ
zt + 1

1 + φ
(wt + ut )

or

πt = θπe
t + γ ′zt + νt (1)

where θ = φ
1+φ

, γ ′ = (δ+β2−β1)
′

1+φ
, νt = 1

1+φ
(wt + ut ). Note, in particular, that 0 � θ < 1. The

cobweb model also takes the reduced form (1), but with θ < 0. This case is considered in Branch
and Evans (2006a).

A rational expectations equilibrium (REE) is a stationary sequence {πt } which is a solution
to (1) given πe

t = Et−1πt , where Et is the conditional expectations operator. It is well known
that (1) has a unique REE and that it is of the form

πt = (1 − θ)−1γ ′Azt−1 + γ ′εt + νt . (2)

Output, in an REE, is a stationary process and does not display the time-series properties evi-
dent in the previous section. If instead agents only took one component of z into account when
forecasting inflation then the reduced form weights on the components of zt will change. Such a
deviation from the REE (2) is a key insight of our model.

3.2. Model misspecification

This paper departs from the rational expectations hypothesis (RE) and imposes that agents are
boundedly rational. One popular alternative to RE is to model agents as econometricians (e.g.
Evans and Honkapohja, 2001). According to this literature, agents have a correctly specified
model the parameters of which are estimated using a reasonable estimator. In many instances,
these beliefs converge to RE. In practice, however, econometricians often misspecify their mod-
els. Professional forecasters often restrict the number of variables and/or lags to conserve degrees
of freedom. Indeed, Chari et al. (2005) argue that econometric misspecification is central to the
debate over identified Impulse Response Functions. Following Evans and Honkapohja (2001),
Evans and Ramey (2006), and Branch and Evans (2006a), we argue that if agents are expected
to behave like econometricians then they can also be expected to misspecify their models. We
impose misspecification by forcing agents to underparameterize in at least one dimension. We
follow Evans and Honkapohja (2001, Chapter 13), however, and impose that these underparame-
terized beliefs are optimal linear projections given the misspecification.

In this section we begin by defining the restricted perceptions equilibrium, given the misspec-
ified models available and the proportion of agents using each model. In Section 3.3 we allow
the model to endogenously determine the proportions and define a Misspecification Equilibrium.
Then, in Section 4 we study the real-time dynamics of the model, with optimal projections re-
placed by least squares estimates and model choices determined by dynamic predictor selection
based on recent performance.

Beliefs are formed from models that take one of the following forms:

πe
t = b1z1,t−1, (3)

πe
t = b2z2,t−1. (4)



W.A. Branch, G.W. Evans / Review of Economic Dynamics 10 (2007) 207–237 215
Because zt is a bivariate VAR(1) it is clear that (3)–(4) represent all possible nontrivial under-
parameterized models. Informally, we view the true economic process as being driven by a high
dimensional exogenous process. That agents underparameterize, or approximate their economet-
ric models, is a reasonable description of actual forecasting behavior. The assumption that zt is
bivariate VAR(1) is, of course, made for analytical convenience. One can show the existence of
Misspecification Equilibria, more generally, if zt is n× 1 and follows a VAR(p). We impose that
the parameters b1, b2 are formed as optimal linear projections of πt on zi,t for i = 1,2. That is,
beliefs satisfy the orthogonality condition

Ezi,t−1
(
πt − bizi,t−1

) = 0. (5)

This condition ensures that, in an equilibrium, agents’ beliefs are consistent with the actual
process in the sense that their forecasting errors are undetectable within their perceived model.
When this occurs we say the model is at a Restricted Perceptions Equilibrium (RPE).7

Equilibria based on model misspecification that satisfy an orthogonality condition like (5) ap-
pear frequently in the literature. Rational expectations equilibria with limited information were
studied in Sargent (1991) and Marcet and Sargent (1995), and Sargent (1999) examined the
closely related concept of self-confirming equilibria. Consistent expectations equilibria, in which
agents have linear beliefs consistent with a non-linear model, were developed in Hommes and
Sorger (1998) and extended to stochastic models by Hommes et al. (2002) and Branch and Mc-
Gough (2005). In Adam (2005a), one of the two possible model equilibria is an RPE. Evans and
Ramey (2006) study optimal adaptive expectations in a Lucas-type model when the exogenous
shock follows a complicated, unknown process. All of these approaches share the idea, exploited
here, that agents are likely to misspecify their econometric model, but (in equilibrium) will do so
optimally, given their misspecification.8

Of course, in the example we develop in this paper, with two underparameterized models, the
misspecification would be easily identified by an experienced econometrician. To obtain tractable
analytical results we develop our ideas using the simplest possible case, with a single endoge-
nous variable of interest and a pair of exogenous variables following a VAR(1) process. Our
analysis should be understood as a simplification of a much more complex economy with many
endogenous variables of interest, driven by multiple exogenous observables following high or-
der processes. We submit that the central themes of this paper would emerge in a more realistic
model in which positive feedback from expectations plays an important role.

Because agents may be distributed heterogeneously across predictors, actual market beliefs
for the economy are a weighted average of the individual beliefs

πe
t = nb1z1,t−1 + (1 − n)b2z2,t−1

where n is the proportion of agents who use model 1.9 Inserting these beliefs into (1) leads to

πt = θ
(
nb1z1,t−1 + (1 − n)b2z2,t−1

) + γ ′Azt−1 + γ ′εt + νt .

Or, by combining similar terms,

πt = ξ1z1,t−1 + ξ2z2,t−1 + ηt (6)

7 Adam (2005b) presents experimental evidence for approximate RPE in a bivariate macro model of output and infla-
tion.

8 See also Guse (2005), who looks at “mixed expectations equilibria,” in which a given proportion of agents may
underparameterize the solution.

9 We identify model 1 as the model with the z1,t component and model 2 is defined symmetrically.
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where

ξ1 = γ1a11 + γ2a21 + θnb1,

ξ2 = γ1a12 + γ2a22 + θ(1 − n)b2,

ηt = γ ′εt + νt , and aij is the ij th element of A. It follows from (5) and (6) that the optimal belief
parameters are

b1 = ξ1 + ξ2ρ,

b2 = ξ2 + ξ1ρ̃

where ρ = Ez1z2/Ez2
1 and ρ̃ = Ez1z2/Ez2

2.10 Note that the ξ parameters are functions of b.
These expressions for b1, b2 are versions of the standard ‘omitted variable bias’ formula. An
RPE is a stationary process for πt which satisfies (6) with parameters ξ1, ξ2 that solve[

1 − θn −θnρ

−θ(1 − n)ρ̃ 1 − θ(1 − n)

][
ξ1
ξ2

]
= A′γ. (7)

A unique RPE exists if and only if the matrix which premultiplies the parameter vector is
invertible. We formalize this invertibility condition below:

Condition �. � �= 0 for all n ∈ [0,1], where

� = 1 − θ + θ2n(1 − n)(1 − ρρ̃).

Remark 1. Using the argument of Branch and Evans (2006a) it can be shown that Condition �

is satisfied for all 0 � θ < 1.

3.3. Misspecification equilibrium

A Misspecification Equilibrium (ME) is an RPE which jointly determines the fraction of
agents using a given model. Below we formally define the equilibrium and present results on
existence of ME.

We follow Brock and Hommes (1997) in assuming the map from predictor benefits to pre-
dictor choice is a multinomial logit (MNL) map.11 Brock and Hommes assume that agents base
their predictor decisions on recent realizations of a deterministic process. In an ME we instead
assume agents base their decisions on the unconditional moments of the stochastic process. Later
when we introduce learning and dynamic predictor selection the predictor choice is based on an
average of past realizations.

As in Evans and Ramey (1992), we assume agents seek to minimize their forecast MSE, i.e.
we assume agents maximize

Eu = −E
(
πt − πe

t

)2
.

This assumption is reasonable in light of the linear RE literature and well-known results in least-
squares prediction theory. If πe

t is conditional on full information then RE would minimize the

10 The existence of these unconditional moments are guaranteed by the stationarity of zt .
11 The use of the multinomial logit in discrete decision making is discussed extensively in Manski and McFadden
(1981).
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expected mean-square error of one step-ahead forecasts. Thus, we preserve this structure when
agents form optimal linear projections on a limited information set. The MNL approach leads to
the following mapping, for each predictor i = 1,2,

ni = exp{αEui}∑2
j=1 exp{αEuj }

. (8)

Noting that
∑2

j=1 nj = 1, (8) can be rewritten

n = 1

2

(
tanh

[α

2
(Eu1 − Eu2)

]
+ 1

)
≡ Hα(Eu1 − Eu2)

where Hα : R → [0,1].
The parameter α, called the “intensity of choice,” measures the agents’ sensitivity to changes

in forecasting success. Brock and Hommes (1997) focus on the case of large but finite α. Branch
and Evans (2006a) note that a drawback to finite α is that agents are not fully optimizing. In
our earlier paper, it was shown that in a stochastic framework where agents underparameterize
their forecasting models, heterogeneity may persist even as α → +∞. In the current paper, in
the theoretical analysis we again emphasize the case α → +∞ , which enables us to provide a
simple characterization of the possible ME. Then in Section 4, where we examine the system
under real-time dynamics, we assume large, finite values of α.

There are alternatives to the MNL approach. For example, Cho and Kasa (2006) develop a
theory of model selection based on statistical criteria for selecting among possibly misspecified
models. An attractive feature of their approach is that it includes a penalty for more complex
models. In the current paper, our underparameterized forecasting models are equally complex.
However, it would be straightforward to extend our framework to incorporate a third, more com-
plex model and introduce a complexity penalty via a fixed cost in the fitness measure Euj . This
approach was emphasized by Brock and Hommes (1997) in a deterministic model. It would be
interesting then to study whether the simple models can still persist, at least for some time, when
there is a more complex and accurate predictor. We leave this issue to future research.

Given that the reduced-form equations governing the competitive equilibrium were derived
from utility maximization, it seems natural to ask why we also don’t assume that agents choose
their forecasting model as the one which maximizes expected lifetime utility. We assume agents
minimize their mean square forecast error as a tractable approximation to full utility maximiza-
tion. We justify this assumption by appealing to bounded rationality: one motivation for the
underparameterization is to model agents as econometricians, and thus the choice of forecasting
model is a statistical one. As Appendix A shows, the reduced-form AD can be derived from
the households’ Euler equations, so the choice of forecasting model does not imply the agents
are violating their intertemporal optimization conditions. Rather, it is a simplifying assumption
that impinges on the firms’ pricing decisions. We expect that altering the model so that predictor
choice depends on profits will not alter the qualitative results. As we show below, the key prop-
erty of the model is that there is positive feedback from expectations onto price and this property
exists under alternative predictor fitness measures.

One can verify that the MSEs of the predictors imply that

Eu1 = ξ2
2

(
ρEz1z2 − Ez2

2

) − σ 2
η ,

Eu2 = ξ2
1

(
ρ̃Ez1z2 − Ez2

1

) − σ 2
η .
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Define the map F : [0,1] → R as

F(n) = Eu1 − Eu2

Ez2
1t

= ξ2
1 (1 − ρρ̃) + ξ2

2

(
ρ2 − Q

)
where Q = Ez2

2/Ez2
1. If condition � is satisfied, F(·) is continuous and well-defined.

Because condition � is satisfied for all θ ∈ [0,1), there exists a well-defined mapping Tα :
[0,1] → [0,1] such that Tα = Hα ◦ F .

Definition. A Misspecification Equilibrium (ME) is a fixed point, n∗, of Tα .

In a Misspecification Equilibrium the forecast parameters satisfy the orthogonality condition
and the predictor proportions are determined by the MNL. In equilibrium, they are, therefore,
both endogenously determined.

Proposition 2. A Misspecification Equilibrium exists.

This result follows since Tα : [0,1] → [0,1] is continuous and Brouwer’s theorem ensures that
a fixed point exists.12 By developing details of the map F we are able to investigate further the
set of ME.

Proposition 3. The function F(n) is monotonically increasing for all 0 � θ < 1.

Appendix A sketches the proofs to all propositions. Theoretical details that carry over from
the cobweb model can be found in Branch and Evans (2006a).

From the equation for expected utility it can be shown that

F(1) ≷ 0 iff (1 − ρρ̃)ξ2
1 (1) ≷

(
Q − ρ2)ξ2

2 (1),

F (0) ≷ 0 iff (1 − ρρ̃)ξ2
1 (0) ≷

(
Q − ρ2)ξ2

2 (0)

where Q = Ez2
2

Ez2
1
. Furthermore, from (7) we have

(ξ1(1))2

(ξ2(1))2
= ((γ1a11 + γ2a21) + (γ1a12 + γ2a22)θρ)2

(1 − θ)2(γ1a12 + γ2a22)2
≡ B1,

(ξ1(0))2

(ξ2(0))
= (γ1a11 + γ2a21)

2(1 − θ)2

((γ1a11 + γ2a21)θρ̃ + γ1a12 + γ2a22)2
≡ B0.

Note that 0 < B0 < B1. Recall that Q,ρ, and ρ̃ are determined by A and Σε . The above results
and Proposition 3 imply:

Lemma 4. There are three possible cases depending on A,θ, γ and Σε :

(1) Condition PM: F(0) < 0 and F(1) > 0. Condition PM is satisfied when (1 − ρρ̃)B0 + ρ2 <

Q < (1 − ρρ̃)B1 + ρ2.

12 Branch and Evans (2006a) prove existence of a Misspecification Equilibrium for an n-dimensional vector zt following
a stationary VAR(p) process, and an arbitrary list of misspecified models, provided |θ | is sufficiently small. The proof in
Branch–Evans does not rely on the sign of θ .
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(2) Condition P1: F(0) > 0 and F(1) > 0. Condition P1 arises when Q < (1 − ρρ̃)B0 + ρ2.
(3) Condition P0: F(0) < 0 and F(1) < 0. Condition P0 arises when Q > (1 − ρρ̃)B1 + ρ2.

Remark. ρρ̃ = 1 is ruled out by the positive definiteness of Σε .

Below we give numerical examples of when each condition may arise.
Under Condition PM, F(0) < 0 and F(1) > 0 implies that either model is preferred so long

as all agents coordinate on that model; thus, there is no incentive for agents to deviate from
homogeneity. When Condition P1 or P0 holds one model always dominates the other.

Lemma 4 allows for a characterization of the set of Misspecification Equilibria for large α.
Let

Nα = {
n∗ | Tα(n∗) = n∗}.

We now present our primary existence result for large α.

Proposition 5. Characterization of Misspecification Equilibria for large α:

(1) Under Condition PM, as α → ∞, Nα → {0, n̂,1} where n̂1 is s.t. F (n̂1) = 0.
(2) Under Condition P0, as α → ∞, Nα → {0}.
(3) Under Condition P1, as α → ∞, Nα → {1}.

The remainder of the paper is primarily concerned with Case 1 in which there are multiple
equilibria. It should be briefly noted that an ME does not coincide with the unique REE in (2). For
all n∗ ∈ Nα a comparison of (2) and the ME in (6) and (7) (for a given n∗) shows that the ME has
different relative weights on the exogenous variables.13 Interestingly, there may exist multiple
ME even though there is a unique REE. The ‘instability’ that results from misspecification is key
for generating endogenous regime change in the Lucas model.

3.4. Further intuition for multiple equilibria

The existence of multiple equilibria, and the resulting real-time learning and dynamic predic-
tor selection dynamics, are key results. In this regard, greater intuition of when multiple equilibria
arises is useful. The existence of multiple equilibria, as demonstrated by Proposition 5, depends
on the asymptotic properties of the z process, and on both the direct (γ ′A) and indirect (θ ) effect
of z on inflation. This subsection presents the intuition on the relationship between the direct and
indirect effects.

For ease of exposition, assume ρ = ρ̃ = 0. From Proposition 5 multiple ME arise when

B0 < Q < B1,

where

B1 = (γ1a11 + γ2a21)
2

(1 − θ)2(γ1a12 + γ2a22)2
,

13 Adam (2005a) considers a New Keynesian model where agents are restricted to univariate forecasting models. In his
model, though, there exist equilibria which are REE. Guse (2005) also studies a model with multiple REE and where
agents’ forecasting models are distributed across the representations consistent with each REE.
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B0 = (γ a11 + γ2a21)
2(1 − θ)2

(γ1a12 + γ2a22)2
.

Now suppose that θ = 0. Then B0 = B1 and there does not exist any Q, hence any z, such
that multiple equilibria exist. Instead suppose that θ → 1. Then B0 → 0 and B1 → ∞. In this
instance, the entire range of uncorrelated, bivariate VAR(1) will lead to multiple equilibria.

The condition PM places restrictions on the interaction between the direct and indirect effects
of the model. When there is no feedback from expectations onto the state, then it is clear that
agents will always choose the predictor with the highest direct effect. When the self-referential
parameter is high, then the indirect effect magnifies the direct effect of the components of z. In
these instances it is possible that coordination on a particular forecasting model will produce
an indirect effect sufficiently stronger than the direct effect so that this predictor dominates in
expected MSE. Significantly, the existence of multiple equilibria arises from the coordinating
forces of positive feedback.

3.5. Numerical examples

We turn now to a numerical illustration. Figure 2 gives the T-maps for various values of α.
The upper part of the figure shows the T-maps corresponding to (starting from n = 0 and moving
clockwise) α = 10, α = 20, α = 50, α = 1000. We set

A =
[

0.5 0.001
0.001 0.3

]
with γ ′ = [0.5,0.75],

Σε =
[

0.03 0.001
0.001 0.15

]
and θ = 0.6. The bottom portion of the figure is the profit difference function F(n).

The matrix A, Σε , and θ have been chosen so that Condition PM holds. Condition PM holds
under many other parameterizations as discussed above. We chose these parameters as they de-
liver quantitatively reasonable results in the section on real-time learning and dynamic predictor
selection.

A key property of the model is that as α → ∞

Hα(x) →
{1 if x > 0,

0 if x < 0,

1/2 if x = 0
(9)

and this governs the behavior of Tα = Hα ◦ F . Since Hα is an increasing function and F is
monotonically increasing, it follows that Tα is increasing. Under Condition PM it is clear that (9)
implies existence of three fixed points for α sufficiently large. The figure illustrates this intuition.

This example makes it clear that multiple equilibria can exist in the Lucas-type monetary
model. When agents underparameterize there is an incentive to coordinate on a particular fore-
casting model. Interestingly, though, there also exists an interior equilibrium. Below we show
that this equilibrium is unstable under learning. The existence of multiple ME suggests there
may be interesting learning phenomena in the model. We take up this issue in the section below.

The particular parameterization which leads to this figure produces the following asymptotic
covariance matrix for zt :

Σz =
[

0.04 0.0013
0.0013 0.1648

]
.
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Fig. 2. T-map for various values of α and θ = 0.60.

Notice that the variance of z2 is approximately 4 times that of z1. The effect of this can be seen in
Fig. 2 where the ‘basin of attraction’ for the n = 0 ME is larger than for the n = 1 ME. A priori
we would expect a real-time version of this economy to spend, on average, more time near n = 0
than n = 1. This logic will be key in Section 5.

It should be emphasized that in other contexts there may exist a unique interior ME. Branch
and Evans (2006a) illustrate this case by developing the framework in the context of the cob-
web model. The existence of an ME with heterogeneity—what Branch and Evans (2006a) call
Intrinsic Heterogeneity—exists for precisely the opposite reasoning for multiple ME in the Lu-
cas model. In the cobweb model there is negative feedback from expectations onto the state.
Under certain conditions there is an incentive for agents to deviate from the consensus model.
Thus, the equilibrium forces push agents away from homogeneity. In the Lucas model the equi-
librium forces, as a result of the positive feedback, push the economy towards homogeneity.
These results illustrate the multiplicity of equilibrium phenomena that can arise depending on
the self-referential features of a simple model.

4. Learning and dynamic predictor selection

In this section we first address whether the Misspecification Equilibria are attainable under
real-time econometric learning and dynamic predictor selection. We now replace optimal linear
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projections with real-time estimates formed via recursive least squares (RLS). We also assume
that agents choose their model each period based on an estimate of mean square error. In Sec-
tion 5 we replace RLS with a constant gain updating rule of the form used, for example, in Evans
and Honkapohja (1993), Sargent (1999) and Cho et al. (2002), and we also employ a constant
gain version of the dynamic predictor selection introduced by Brock and Hommes (1997).

We thus replace the equilibrium stochastic process (6) with one that has time-varying beliefs
and predictor proportions. Below we provide details on how the key relationships are altered.
This section briefly discusses the stability of the equilibrium under recursive least squares. We
model least squares learning as in Branch and Evans (2006a). Agents have a RLS updating rule
with which they form estimates of the belief parameters b1

t , b
2
t . They also estimate the MSE

of each predictor by constructing a moving average of past squared forecast errors with equal
weight given to all time periods. Given estimates for the belief parameters and predictor fitness,
agents choose their forecasting model according to the MNL map in real time.14

We now assume the equilibrium stochastic process is given by

πt = ξ1
(
b1
t−1, n1,t−1

)
z1,t−1 + ξ2

(
b2
t−1, n1,t−1

)
z2,t−1 + ηt .

Agents use a recursive least squares updating rule,

b
j
t = b

j

t−1 + κtR
−1
j,t zj,t−1

(
πt − b

j

t−1zj,t−1
)
, j = 1,2.

where

Rj,t = Rj,t−1 + κt

(
z2
j,t−1 − Rj,t−1

)
, j = 1,2.

We consider two possible cases for the gain sequence κt : under decreasing gain, κt = t−1 so
that κt → 0; under constant gain, κt = κ ∈ (0,1).

We also assume agents recursively update mean-square forecast error according to

MSEj,t = MSEj,t−1 + λt

((
πt − πe

j,t

)2 − MSEj,t−1
)
, j = 1,2.

We again consider two possible cases for the gain sequence λt : under decreasing gain, λt = t−1

so that λt → 0; under constant gain, λt = λ ∈ (0,1).
We first look at the case of decreasing gain for both κt , λt . We then turn in the next Section to

our main emphasis of constant gain updating.

4.1. Stability under decreasing gain

In this subsection we study whether the sequence of estimates b1
t , b

2
t and predictor proportions

n1,t converge to a Misspecification Equilibrium.15 Our aim is to use simulations to ascertain
which equilibria are stable under real-time learning and dynamic predictor selection. Establishing
analytical convergence is beyond the scope of this paper.

We continue with the parameterization in the previous section which yielded multiple ME.
We set

A =
[

0.5 0.001
0.001 0.3

]
, Σε =

[
0.03 0.001

0.001 0.15

]

14 A point made in Branch and Evans (2006a) is that stability of a steady-state depends on how more recent forecast
errors are weighted in the moving average calculation. In particular, as the most recent error is weighted more heavily
then instability will result as in Brock and Hommes (1997, 1998).
15 Because the analysis is numerical we are being deliberately vague in what sense these sequences converge.
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and γ ′ = [0.5,0.75]. We also set θ = 0.6 and α = 1000.16 We simulate the model for 5,000 time
periods. The initial value of the VAR is equal to a realization of its white noise shock, i.e., z0 = ε0.
The initial value n1,0 is drawn from a uniform distribution on [0,1] and bj,0, j = 1,2 is drawn
from a uniform distribution on [0,2]. The initial estimated variances are set R1,0 = R2,0 = 1.

Figure 3 illustrates the results of two representative simulations. The top panel plots the
simulated proportions nt against time. Recall that for the chosen parameters there exist three
equilibria. The plot demonstrates that only the equilibria with homogeneous expectations are
stable under learning and dynamic predictor selection. The dynamics quickly converge to either
n = 0 or n = 1. The bottom panel plots the reduced form equilibrium parameters b1

t−1, b
2
t−1. In

each panel there are two horizontal lines which correspond to the parameter values in either the
n = 0 or n = 1 ME. In the b1 panel the top horizontal line corresponds to the n = 1 equilibrium
and in the b2 panel the top horizontal line is for the n = 0 equilibrium. As seen in the top panel,

Fig. 3. Two RLS learning and dynamic predictor selection trajectories converging to ME. Note: horizontal lines corre-
spond to equilibrium parameter values.

16 Similar results were obtained for other parameter settings. The speed of convergence is sensitive to larger values of θ

and α.
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these parameters converge to their ME values. Which equilibrium the dynamics converge to de-
pends on the basins of attraction. As we emphasize in the next section, these basins are sensitive
to the parameterization of the zt process. Thus, we conclude that ME with n ∈ {0,1} are locally
stable under learning and dynamic predictor selection.

The intuition for this stability is as follows. The multiple equilibria results from an incen-
tive for agents to coordinate on a single model. These coordinating forces render the interior
equilibrium, with heterogeneity, unstable under learning. Suppose the dynamics begin in a neigh-
borhood of the interior equilibrium. Because the profit function is monotonically increasing, as
more agents mass onto a particular model then more agents will also want to use that model. The
dynamics are repelled from the neighborhood of the interior steady-state and towards one of the
other ME. To which ME the dynamics converge depends on the basin of attraction in which the
initial conditions lie.

This result is, again, distinct from the result in Branch and Evans (2006a). In that paper,
there is a unique Misspecification Equilibrium which is stable under learning. In the current
paper we have multiple equilibria on the boundary of the unit interval that are locally stable
under learning. This result leads to interesting dynamics when agents update with a constant
gain learning algorithm.

5. Real-time learning with constant gain

It has been suggested by Sargent (1999), among others, that agents concerned with structural
change should use a constant gain version of RLS to generate parameter estimates. A constant
gain algorithm involves a time-invariant gain which places a high relative weight on recent versus
distant outcomes. If agents are concerned about structural change then a constant gain algorithm
will better pick up a change in parameters. It has also been argued by Orphanides and Williams
(2005a) that constant gain learning is more reasonable than RLS learning because the learning
rule itself is stationary whereas it is time-dependent in RLS. Empirical support for constant gain
learning is provided in Orphanides and Williams (2005b), Branch and Evans (2006b), and Milani
(2005).

In the Lucas model with misspecification we showed that there may exist multiple equilibria.
Moreover, a subset of these equilibria are stable under learning with a decreasing gain algorithm
such as RLS. In these equilibria there is an incentive for agents to coordinate on the same fore-
casting model. If a large enough proportion of agents suddenly switch forecasting models then
the economy will switch from one stable ME to another. Agents concerned with this possibility
should use a constant gain algorithm instead of a decreasing gain to account for possible regime
change.

There has been an explosion in research adopting constant gain learning rules. Examples
include Bullard and Cho (2005), Cho and Kasa (2003), Cho et al. (2002), Evans and Honkapohja
(1993, 2001), Evans and Ramey (2006), Kasa (2004), Orphanides and Williams (2005a), Sargent
(1999), Sargent and Williams (2005) and Williams (2004a, 2004b). In many of these models
constant gain learning can lead to abrupt changes or ‘escapes’ in the dynamics. For example,
in models with multiple equilibria, such as Evans and Honkapohja (1993, 2001), occasional
shocks can lead agents to believe the economy has shifted to a new equilibrium. The result of
these beliefs is a self-confirming shift to the new equilibrium. Unlike sunspot equilibria, these
shifts are driven entirely by agents’ recursive parameter estimates. In Sargent (1999), Cho and
Kasa (2003), Cho et al. (2002), Bullard and Cho (2005), and McGough (2006), occasional large
shocks can lead to temporary deviations from the equilibrium that is uniquely stable under RLS.
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The same logic underlying the use of constant gain RLS for parameter estimation carries over
to the estimate of the relative fitness of the two forecast rules. Agents who are concerned about
structural change, including shifts taking the form of occasional regime changes, would want to
allow for the possibility that the better performing forecast rule may shift over time. In order to
remain alert to such shifts, agents would weight recent forecast errors more heavily than past
forecast errors when computing the average mean square error of each rule. This is equivalent
to a constant gain estimate of the average mean square error and leads to dynamic predictor
selection following a stochastic process.

In this section we examine the implications of constant gain learning and dynamic predic-
tor selection in the Lucas model with multiple misspecification equilibria. Note, though, that
we expect to find distinct dynamics from the studies listed above. This is because in each mis-
specification equilibrium the mean inflation rate, and hence mean output, is the same. Instead
the variance of inflation differs across equilibria. We show that endogenous inflation and out-
put volatility arise through two channels: (1) the drift in beliefs from parameter learning with
a constant gain RLS; (2) dynamic predictor selection with a geometric average of past squared
forecast errors.

Our results show that this combination potentially could generate observed volatility along
the lines presented in Section 2.17 In Branch and Evans (2006a) the joint learning of parameters
and dynamic predictor selection was presented as a novel extension of Evans and Honkapohja
(2001) and Brock and Hommes (1997), but that model possesses a unique equilibrium and the
focus was on heterogeneity and stability. Here the focus is on endogenous volatility resulting
from the dual learning process in a set-up with multiple equilibria.

5.1. Joint learning with constant gain algorithms

With constant gains κt = κ > 0, λt = λ > 0 the dynamics will not converge to a Misspec-
ification Equilibrium. However, we note that because the ME with n ∈ {0,1} are stable under
decreasing gain learning, we anticipate that the dynamics will spend a considerable portion of
their time in a neighborhood of the stable MEs.

Under constant gain, MSEj,t estimates the MSE as an average of past squared forecast errors
with weights declining geometrically at rate 1 − λ. Similarly, constant gain least squares aims
to minimize a weighted sum of squared errors where the weight declines geometrically at rate
1 − κ . In choosing κ,λ there is a trade-off in tracking structural change versus filtering noise.
How strongly nj,t and bj,t react to these shocks then depends on λ, κ , the ‘intensity of choice’
parameter in the MNL mapping α, and the relative size of the basins of attraction of the two
stable steady-state ME. Switching as a result of changes in relative MSE is the second source
of endogenous volatility. Suitable choices of λ,κ,α determine the degree to which the model
exhibits parameter drift and/or endogenous switching between basins of attraction.

For simplicity, our model does not explicitly incorporate structural change. However, the
switches between equilibria provide a (self-fulfilling) rationale for the use of constant rather
than decreasing gains. Evans and Honkapohja (1993) construct a model with multiple stable
equilibria and pin down the optimal constant gain in agents’ learning algorithm as an approx-
imate Nash equilibrium. In these settings, there is an optimal gain because agents are alert to

17 Bacchetta and Van Wincoop (2004) develop a model in which agents have private signals and underparameterized
forecasting models. They show that the predictive power of certain macroeconomic fundamentals may change over time
as agents’ higher order expectations cause them to occasionally over-react to news.
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potential switches between equilibria. An extension of the present paper along these lines would
be interesting and is left to future research.

As a means of illustrating the intuition we first present a simulation from a parameterization
designed to yield striking results. We first let the asymptotic moments of the z process differ
markedly. Set

A =
[

0.5 0.001
0.001 0.3

]
, Σε =

[
0.2 0.1
0.1 3.2

]
,

γ ′ = [0.5,0.5], θ = 0.95, and α = 1000. We set κ = 0.15 and λ = 0.35. With this parameteriza-
tion the asymptotic covariance matrix for z is

Σz =
[

0.2668 0.1190
0.1190 3.5166

]
.

Figures 4–5 illustrate typical trajectories when α = 1000,10 respectively. Figure 4 illustrates
a number of switches between equilibria during the period 1000–2500. Notice that in this plot
the system spends most of its time at the n = 0 ME. Moreover, when the dynamics switch to
the n = 1 ME it is for relatively short periods. This is because the basin of attraction for n = 0
is relatively large, and it takes a greater accumulation of shocks to place the economy in the
n = 1 basin. This parameterization was designed to make the volatility differences dramatic. In
so doing we set the variance of inflation at the n = 0 ME much greater than at the n = 1 ME.
Because the variance of z2 is much greater than z1 and z1, z2 are weakly correlated, the basin
of attraction for the ‘lower’ ME is larger. It is only when a very large proportion of agents use
the z1 forecasting model is it in the best interests of all agents to use that model. Notice also that
these dynamics exist for both large and small values of α.

Fig. 4. Constant gain learning with θ = 0.95, κ = 0.15, λ = 0.35, α = 1000.
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Fig. 5. Constant gain learning with θ = 0.95, κ = 0.15, λ = 0.35, α = 10.

Once a switch takes place there is considerable differences in inflation volatility. Notice that
during the periods of frequent switches between ME—so that, on average, more time is spent at
the n = 1 ME—the inflation volatility switches between a high rate and a low rate. In the n = 1
ME there is no positive feedback from z2 through expectations onto the inflation rate. Thus, in
the n = 1 ME a larger relative weight is placed on z1 which is a random variable with a lower
asymptotic variance. Hence, we see much lower inflation variances.

These simulations suggest an interpretation to the empirical regularity discussed in the be-
ginning of the paper. In the Lucas model with model underparameterization there may exist
multiple equilibria where agents ignore some relevant information when forecasting inflation. If
there are significant differences between the information they incorporate and ignore, then the
expectational feedback will make the inflation variances differ across these equilibria. To explore
this hypothesis further we parameterize the model so that unconditional variances have plausible
magnitudes. We also seek to isolate the contributions of parameter learning and mean-square
error learning to the endogenous volatility.

We now set the parameters as in Section 3.4 and Section 4, which we reproduce here for
convenience:

A =
[

0.5 0.001
0.001 0.3

]
, Σε =

[
0.03 0.001
0.001 0.15

]

with θ = 0.6, γ ′ = (0.5,0.75) κ = 0.01, λ = 0.04. A value of κ = 0.01 in monthly data is
consistent with Branch and Evans (2006b). There is not a consensus in the literature on the
appropriate value of λ; to remain neutral on the issue, we present below simulations with low
(0.01) and high (0.20) values as well. We simulate the model, first with a transient period of
length 15,000, and then for 5000 periods in which we report the results in the figures below.
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To isolate the effect of parameter drift versus dual learning our strategy is as follows. We first
present results where we fix the proportion of agents n to one of its ME values, but allow agents
to update their parameters with constant gain least squares. This is analogous to the approach
pursued, for example, by Orphanides and Williams (2005a) in a full-information setting. We
then present simulations with dual learning.

Figure 6 presents the results from a typical simulation. There are 5 panels in the figure. Begin-
ning from the northwest and moving clockwise they are: predictor proportion n, belief parameters
b1
t , b

2
t , time t estimated unconditional variance of output and price respectively. The uncondi-

tional variances are computed as moving averages with window length 200 of the variance of the
simulated time series. We set n = 0, though similar results obtain if we instead set n = 1. The
horizontal lines in the figure are the ME values.

Figure 6 shows that some of the endogenous volatility can be attributed to parameter drift.
With a constant gain in the least-squares algorithm agents are sensitive to structural change. This
is why in the two panels on the right-hand side of the figure there is considerable parameter drift.
This parameter drift manifests itself in the reduced-form parameters of the model and induces

Fig. 6. Parameter learning and no dynamic predictor selection with n = 0. Solid line is n = 0 ME and dashed line
represents n = 1 ME.
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some endogenous volatility. However, it does not generate the type of regime-shifting volatility
that was documented in Section 2 and elsewhere in the literature.

Figure 7 now puts both elements together to illustrate that dual learning can account for en-
dogenous volatility. Figure 7 demonstrates that combining parameter drift and dynamic predictor
selection induces a stochastic process for inflation and output with volatility which both drifts
and switches between high and low volatility regimes.

The length of time spent in a neighborhood of an ME depends in a complicated way on the size
of the basin of attraction, the gains κ,λ, and the intensity of choice α. Figure 8 presents a ‘close-
up’ view of a particular segment of the simulation in Fig. 7. This segment clearly demonstrates
the drifting and regime switching inflation and output volatility.

To explore further how the choice of λ impacts the switching between equilibria and the
resulting drift and/or regime switching volatility, we present two more simulations with low and
high values of λ. Figure 9 presents a simulation with the same parameter values except now
λ = 0.20, while Figure 10 sets λ = 0.01. Figure 9 clearly demonstrates that the frequency of
switching between equilibria, and the resulting regime switching variances, increases with λ—
the parameter governing the weighted average of past forecast errors. For sufficiently small λ,
there is no endogenous switching between equilibria and the time-series are mostly characterized
by volatility drift. Thus, depending on the appropriate value of λ or κ , a serious calibration

Fig. 7. Parameter learning and dynamic predictor selection (λ = 0.04).
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Fig. 8. Close-up of Fig. 7.

exercise might be able to shed light on some of the issues raised by Sims–Zha and Cogley–
Sargent.

The above results lead to drifting and regime switching volatility as agents switch between
underparameterized forecasting models. Recent research by Cogley and Sargent (2005b) and
Brock et al. (2003) instead take a Bayesian model averaging approach. It is not obvious whether
it would still be possible to generate heterogeneity and model switching if model averaging were
available as a third alternative. The existence of heterogeneity is an important issue, and it would
be interesting for future research to study whether heterogeneous expectations will still arise
when agents have the option to do Bayesian model averaging.

5.2. Further discussion

As a means of further discussion, an overview is helpful. We take a business cycle model
where unexpected shocks drive real output fluctuations. We assume bounded rationality but pre-
serve the spirit of Muth’s hypothesis and find that there exist multiple equilibria in a model with
a unique REE. Moreover, these multiple equilibria arise because the self-referential feature of
the Lucas model provides an incentive for agents to forecast with the same model. Each equilib-
rium can be characterized by the forecasting model that generates it, and each predictor produces
distinct forecasts. For practical purposes, the important theoretical implication of the multiple
equilibria result is that the self-referential property alters the effects the exogenous stochastic
processes have on inflation and output; the positive feedback from expectations onto inflation
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Fig. 9. Parameter learning and dynamic predictor selection with large predictor fitness gain (λ = 0.2).

reinforces the effect of exogenous disturbances. As agents switch forecasting models, the under-
lying equilibrium stochastic process changes. This theoretical finding is the basis for the learning
and predictor selection dynamics in this section.

The model in this paper is an extension of the learning literature and Brock–Hommes’ Adap-
tively Rational Equilibrium Dynamics (A.R.E.D.). In the current paper beliefs and the choice of
forecasting model are jointly determined. In contrast to our earlier paper set in a cobweb model—
whose primary distinction is a negative feedback from beliefs onto the state—we find multiple
equilibria. This insight suggested, and our results confirm, that a dynamic version of the model
can lead to new and important results.

Previous work by Orphanides and Williams (2005a) and Sargent (1999) highlight the role
‘perpetual learning’ might play in the Great Moderation. But, as has been argued elsewhere, the
actual US experience appears to have been regime shifting and drifting volatility. The results
of this section suggest a new avenue for exploring how an economy might endogenously gen-
erate shifting inflation and output volatility. This section, however, is not a serious calibration
or empirical exercise, but rather a conceptual experiment designed to highlight that the model
in Section 3 might generate stochastic properties in line with observed time-series. A rigorous
check of this hypothesis is beyond the scope of the present paper.
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Fig. 10. Parameter learning and dynamic predictor selection with small predictor fitness gain (λ = 0.01).

In particular, we identify two channels. Parameter learning with a constant gain version of
least squares produces drifting volatility, but does not generate regime shifting volatility (Fig. 6).
However, the inclusion of constant gain dynamic predictor selection, in which agents estimate a
geometric average of past squared forecast errors for each competing model, can lead to distinct
shifts in inflation and output volatility (Figs. 7–9). As with constant gain parameter updating, the
use of constant gain in estimates of predictor fitness can be interpreted as a way of providing
robustness against structural change.

With dual constant gain learning, shocks can occasionally lead agents to switch forecast mod-
els. This, via the feedback of expectations onto the state, produces a regime switch in inflation
and output volatility that can have varying durations. Evidence presented in Cogley and Sar-
gent (2005a) and Sims and Zha (2006) suggest that drifting and regime switching volatility are
important elements of the empirical record. The simulation results in this section demonstrate
that a simple self-referential economic model, in which agents choose between competing par-
simonious predictors, provides a possible explanation for these findings. Future research should
explore to what extent the implications of our theoretical model can account empirically for these
characteristics of US time series. Importantly, the gain on past forecast errors plays a central role
in the degree to which volatility displays drifting as opposed to regime switching volatility.

It is important to emphasize how natural the assumptions are that generate these results. We
model agents as econometricians, in effect, taking the motivation of the learning literature seri-
ously. Because of computational limitations and degrees of freedom problems agents are forced
to underparameterize by omitting at least one variable and/or lag from their forecasting model.
Although the agents are boundedly rational, they are ‘in the spirit’ of Muth’s original hypothesis
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since agents only select best-performing statistical models. In the real-time dynamic version of
the model we again assume that agents behave as econometricians by recursively updating para-
meter and goodness of fit estimates in light of new data and remaining vigilant against structural
change.

6. Conclusion

This paper has considered a simple Lucas-type monetary model in which inflation is driven by
an exogenous process and by expectations of current inflation. We introduce model uncertainty
and underparameterization to the framework. We assume that agents choose the best perform-
ing statistical models from a list of misspecified forecasting functions. When agents’ predictor
choices are endogenous to the model, there exists an equilibrium for the stochastic process,
agents’ beliefs, and the proportion of agents using a given model. Moreover, there may exist
multiple Misspecification Equilibria, each with distinct stochastic properties. Numerical simula-
tions show that a subset of these equilibria are stable under least squares learning. If agents adopt
dual learning with constant gains, then the system can endogenously switch between equilibria
producing time-varying inflation and output volatility.

There is empirical evidence of time-varying inflation and GDP volatility that is consistent
with the equilibrium and real-time learning properties of our model. Importantly, we identify two
channels through which the economy may generate endogenously drifting and regime-switching
economic volatility. The first channel is drifting parameter estimates that arise from an adap-
tive learning rule alert to possible structural change. Drifting parameter estimates imply mean
forecasts consistent with their equilibrium values, but with occasional departures that induce
economic volatility not present in long-run equilibrium. The second channel is dynamic pre-
dictor selection. Analogously, predictor selection rules that remain alert to possible structural
change can lead agents to switch forecast rules in response to occasional large shocks. Such
shocks can induce switching between equilibria and produce persistent swings in inflation and
output volatility.

Our results show that endogenous volatility may arise naturally if underparameterization and
positive expectational feedback are important elements of the economic process. Strikingly, we
are able to obtain these results in a simple Lucas-type model that has a unique rational expec-
tations equilibrium. More generally, the results of this paper therefore indicate that there are
potentially important implications from incorporating dual learning of parameter estimates and
dynamic forecasting model selection.
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Appendix A

A.1. Derivation of the reduced-form equations

This appendix derives the reduced-form equations from a yeoman farmer type model with
money in the utility function and a fraction of preset prices as studied in Chapter 3.1 of Woodford
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(2003), but extended to include two types of agents who differ by their expectation operator.18

Each farmer i uses its own differentiated labor input Nit to produce a good according to the
production technology yit = Ω

−1/(1+η)
t Nit , where Ω

1/(1+η)
t is the unit labor requirement. The

farmer then chooses its optimal sequence of consumption, real money and bond holdings (de-
noted Bt ). That is, households solve

max
{ci

t ,m
i
t ,N

i
t ,B

i
t }

Êi
0

∞∑
t=0

βt (at cit )
1−γ + (btmit )

1−γ

1 − γ
− ψt(Nit )

1+η

1 + η

subject to cit +mit +Bit = yit + pt−1
pt

mit−1 + pt−1
pt

(1+ it−1)Bit−1 where at , bt ,ψt are preference
shocks, it is the nominal one-period interest rate on debt, and ci,p are CES indexes. In the main
text pt , mt refer to the logs of the price level and money supply. In this appendix we will instead
use pt and mt for the price-level and real money supply, respectively, and use p̂t and m̂t − p̂t to
refer to these variables in log form.

The household’s first-order conditions can be written as,

(at cit )
−γ = ψΩty

η
it ,

(at cit )
−γ = (btmit )

−γ + βÊi
t (at+1cit+1)

−γ pt

pt+1
,

(at cit )
−γ = β(1 + it )Ê

i
t (at+1cit+1)

−γ pt

pt+1
.

These conditions must be satisfied for all i and in all t . In the steady-state pt+1/pt = 1 and
β(1 + it ) = 1. Combining the Euler equations it is possible to solve for the money-demand
function:

mit =
(

it

1 + it

)−1/γ

cit

at

bt

. (10)

Following Walsh, and letting γ → ∞, we get

mit = cit

at

bt

.

Equilibrium in the money-market requires

mt = nc1t

at

bt

+ (1 − n)c2t

at

bt

= yt

at

bt

.

Taking logs of both sides

m̂t − p̂t − ât + b̂t = ŷt

where x̂ denotes the log of x. This is the AD equation.
Firms set price to maximize profits.19 Let Pt be the firm’s price taking as given the aggregate

price-index pt . Then a firm’s profit function is

Π = Pt yit − ψtΩty
1+η
it pt

(at cit )−γ
.

18 A more detailed appendix is available in the working paper version.
19 Equivalently, one could replace yit in the households problem with market demand and let the farmer choose its
price.
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It can be verified that the F.O.C. reduces to,(Pt

pt

)1+θη

= θ

θ − 1

Ωtψty
η
t

(at cit )−γ
,

or, in log form

ln(Pt ) = ln(pt ) + ξy ln(yt ) + ξc ln(cit ) + ζt .

The variable ζt collects the stochastic terms Ωt,ψt , at . Following Woodford, assume there is a
fraction τ of firms that set prices optimally in every period, while the remaining set their prices
one period in advance. Denote pif ,pid as the prices of an agent of type i with flexible and
predetermined prices, respectively. Then the log-linearized pricing equations are:

lnpif t = lnpt + ξyŷt + ξcĉit + ζt ,

lnpidt = Êi
t−1 lnpif t .

Let n be the fraction of type 1 agents. Defining Êt−1 lnpt = nÊ1
t−1 lnpt + (1 − n)Ê2

t−1 lnpt we
have

lnpt − Êt−1 lnpt = τ

1 − τ
(ξy + ξc)(ŷt + ζt ).

Therefore, we have the AS (aggregate supply) relation

ŷt = φ
(
p̂t − p̂e

t

) + ζt .

Appropriately defining wt and zt = Azt−1 + εt , where z′ = (z1, z2), in terms of the preference
shocks, both the AD and AS equations can be re-written in the same form as the text. In the AS
equation we write

qt ≡ ŷt − Ω̂t = φ
(
p̂t − p̂e

t

) + β1zt

where, for example, Ω̂t follows a deterministic trend.

A.2. Proofs of propositions

Proof of Proposition 3. The proof of the proposition follows Lemma 5 in Branch and Evans
(2006a). Here we briefly summarize the argument and amend it as necessary. We can rewrite (7)
as

S(n1)ξ = A′γ,

where ξ ′ = (ξ1, ξ2) and S(n1) is the indicated 2 × 2 matrix. We seek to sign dF/dn1 =
(dF/dξ)′(dξ/dn1). Following Branch and Evans (2006a), it can be verified that

dF/dn1 = 2θξ ′K(n1)ξ, where

K =
(

1 − ρρ̃ 0
0 ρ2 − Q

)
S−1

(
1 ρ

−ρ̃ −1

)

=
⎛
⎝ (r2−1)(−1+(1+n(r2−1))θ)

(1−θ)+(n−1)n(r2−1)θ2

√
Qr(r2−1)(θ−1)

(1−θ)+(n−1)n(r2−1)θ2

√
Qr(r2−1)(θ−1)

(1−θ)+(n−1)n(r2−1)θ2
−Q(r2−1)(1−r2θ+n(r2−1)θ)

(1−θ)+(n−1)n(r2−1)θ2

⎞
⎠ .

Here r2 = ρρ̃ with 0 � r2 < 1. Notice that K is symmetric. It is easily verified that the necessary
and sufficient condition for monotonicity that K is positive semidefinite is satisfied. �
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Proof of Proposition 5. Our proof again follows Branch and Evans (2006a). In our earlier paper
it was established that for each α the map Tα has a fixed point denoted n∗(α), and, more-
over, ∃{α(s)}s s.t. α(s) → ∞ ⇒ n(α(s)) → n̄ for some n̄ which is a fixed point to the map
limα(s)→∞ Tα(s). The proposition claims that n̄ ∈ {0, n̂,1} where F(n̂) = 0. That n̂ is a fixed
point was proven in Proposition 8 of Branch and Evans (2006a). Following the arguments for
Conditions P0 and P1 in that proposition, it is clear that F ′ > 0 implies n̄ ∈ {0,1} is a fixed
point. �
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