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This article advocates a theory of expectation formation that incorporates many of the
central motivations of behavioral finance theory while retaining much of the discipline of
the rational expectations approach. We provide a framework in which agents, in an asset
pricing model, underparameterize their forecasting model in a spirit similar to Hong, Stein,
and Yu (2007) and Barberis, Shleifer, and Vishny (1998), except that the parameters of
the forecasting model and the choice of predictor are determined jointly in equilibrium.
We show that multiple equilibria can exist even if agents choose only models that maxi-
mize (risk-adjusted) expected profits. A real-time learning formulation yields endogenous
switching between equilibria. We demonstrate that a real-time learning version of the
model, calibrated to U.S. stock data, is capable of reproducing regime-switching returns
and volatilities, as recently identified by Guidolin and Timmermann (2007). (JEL G12,
G14, D82, D83)

There is, by now, an established literature that studies financial market anoma-
lies such as excess volatility, Markov switching returns and volatilities, and
predictability of excess returns. (See Lettau and Ludvigson 2005 for a recent
discussion.) One important finding in this literature is evidence of multiple
regimes each with distinct return and volatility characteristics. See, for exam-
ple, Guidolin and Timmermann (2005, 2007, 2008), Ang and Bekaert (2002),
Turner, Startz, and Nelson (1989), Bollerslev, Chou, and Kroner (1992),
Garcia and Perron (1996), and Perez-Quiros and Timmermann (2000). This
article develops a model of bounded rationality that is able to capture many of
the salient features of Markov switching returns.

One popular viewpoint is that empirically observed excess returns cannot be
explained by a standard rational expectations (RE) model. An explosion of re-
search proposes alternative theoretical foundations for the empirical findings.
An offshoot of this literature looks beyond RE and formulates behavioral or
boundedly rational channels through which these anomalies might arise (e.g.,
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Barberis, Shleifer, and Vishny (1998); Hong and Stein 1999; Hong, Stein, and
Yu (2007); Lansing 2006). Bounded rationality, of course, is not only of inter-
est to financial economists. In macroeconomics, there is a broad literature that
replaces full rationality with agents who behave as econometricians, that is,
by agents who estimate and select their models in real time. (See, for example,
Marcet and Sargent 1989; Evans and Honkapohja 2001; Sargent 1999.)

While similar in spirit, these two approaches differ in the degree to which
agents’ expectations differ from RE. For example, in Marcet and Sargent
(1989) and Evans and Honkapohja (2001), agents typically have correctly
specified reduced-form models but update their parameter estimates in real
time. In many models, these expectations converge to RE. In Sargent (1999)
and Williams (2004), agents may have misspecified econometric models but
within the context of their subjective model they are unable to detect their
misspecification. In Branch and Evans (2006a) and Evans and Ramey (2006),
degrees of freedom or cognitive limitations force agents to underparameterize
their forecasting models. These self-referential models restrict beliefs and the
nature of misspecification to be determined in equilibrium.

In this article, we apply the econometric misspecification approach to asset
pricing questions. We develop our results in the context of an asset pricing
model in which the stock price depends on expected future returns and on an
exogenous process for share supply. Our modeling of share supply is meant to
proxy for asset float, as discussed in Ofek and Richardson (2003), Cochrane
(2005), and (2006). We are motivated, in part, by Hong et al., who demonstrate
strong empirical implications from a model of heterogeneous expectations, in-
creasing supply of shares, and short-sales constraints. Following the approach
of Branch and Evans (2006a), we assume that agents underparameterize their
forecasting model for price: agents perceive price as depending on dividends
or share supply, but not both.2 This simple framework is meant to stand in
for a more complex environment in which traders face uncertainty about their
model specification and choose parsimonious trading strategies.> We assume
that agents choose only between models, or trading strategies, that yield the
highest (or nearly the highest) risk-adjusted trading profits. Within this class of
underparameterized models, the key condition restricting beliefs is that model
parameters must satisfy a least-squares orthogonality condition. Agents’ fore-
casting models are statistically optimal in the sense that their forecast errors
are orthogonal to their predictor.

It is worth expanding on the motivation for our assumption that agents
employ well-chosen but underparameterized forecasting models. In the econo-

One could generalize the model further by assuming that dividends and asset float follow multivariate stochastic
processes with high-order lags, and agents are restricted to underparameterize in at least one dimension. The
main qualitative findings of this article would extend to this more general formulation.

2 Although we motivate our underparameterization restriction by noting that agents may face degree of freedom

or cognitive limitations, we could also appeal to psychological explanations such as investor inattention. The
implications of investor inattention are considered by Peng and Xiong (2006) and Hirshleifer and Teoh (2004),
in distinct settings.
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metric learning approach, economic agents are modeled as econometricians.
It follows that one should take seriously the applied econometric problem of
choosing a satisfactory specification of the regressors. Although various types
of misspecification could be considered, we here, as in our earlier work, fo-
cus on the implications of agents choosing between alternative underparam-
eterized models. In doing so, we are investigating the implications of agents
following the advice of many econometricians to choose “parsimonious” fore-
casting models—that is, to omit variables or lags that are not clearly essential
for improving the statistical fit. At least as early as Nelson (1972), it has been
known that simple, parsimonious models often empirically outperform more
complex models in out-of-sample forecasting.

The central reason to expect the use of underparameterized models is that
the economic environment is complex relative to the amount of data typically
available for estimation of alternative forecasting models. Forecasting models
face a degrees of freedom limitation, dictated by the available sample size,
which typically forces the use of simplified models. Long before the available
degrees of freedom are actually exhausted, the quality of estimated forecast
models deteriorates because of parameter uncertainty: the mean square error of
parameter estimates and of forecasts can be reduced by omitting relevant vari-
ables if the sample size is not sufficiently large. Furthermore, if there is actual
or perceived ongoing structural change in the economy, the degrees of freedom
problem cannot be expected to diminish in severity asymptotically, since the
effective sample size, which discounts past data, remains constant over time.
These considerations motivate our focus on underparameterized models.*

Many financial economists embrace bounded rationality as a way of explain-
ing the existence of multiple trading strategies, heterogeneity in expectations
and preferences, volatility, and under-/overreaction to economic news. A gap
exists in the literature that we seek to fill by studying the existence of these
multiple trading strategies and evolution over time, as an equilibrium phe-
nomenon. To these ends, this article makes a number of contributions. We
demonstrate that underparameterization and misspecification equilibria (ME)
can arise in a simple asset pricing model. Depending on the deep parameters
of the model, there may exist multiple ME in asset prices. As we show, agents’
misspecification regarding the price process affects their perceptions about the
return and riskiness of stocks. When there are multiple equilibria, traders will
hold different perceptions of return and risk at each equilibrium. This implies
that the mean and variance of excess returns will differ in each equilibrium.

In a related approach, Hong, Stein, and Yu (2007) assume that dividends are
driven by two exogenous processes, and agents can condition their expecta-

In Section 3, we look at the robustness of our results to expanding the list of forecast models to include a bivariate
model as well as the univariate models. In future research, it would be of interest to allow for an even larger set
of possible specifications.
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tions only on one part of the process.> Their model, however, does not fully
exploit the self-referential nature of asset pricing models. Instead, they appeal
to behavioral and psychological explanations. While behavioral approaches are
interesting and important, there is still an open question of whether one can
address these financial market anomalies and still assert the kind of disci-
pline imposed by RE. In an RE model, the self-referential feature of the model
requires that both the forecasts generated from the model and the market out-
comes be jointly determined. In the approach presented in this article, the
parameters of the forecasting model, the perceived riskiness of stocks, and
the distribution of agents across models are jointly determined. The additional
equilibrium feedback effect in our approach makes multiple equilibria possi-
ble, which, as discussed below, has important empirical implications.

This article is most closely related to Timmermann (1994, 1996), who
demonstrates that an asset pricing model, where RE are replaced with adap-
tive learning, is capable of generating excess volatility. Similarly, Barsky and
DeLong (1993) show that a model with adaptive learning can generate autocor-
relation patterns consistent with the data. We, like Timmermann, assume that
agents are boundedly rational, but unlike Timmermann, we confront investors
with a list of misspecified models. The theoretical novelty of our approach is
that we pin down the beliefs and distribution of agents across models as an
equilibrium outcome jointly determined with stock price. The multiple equi-
libria, distinct to our theoretical models, have important empirical implications
since they provide a potential explanation for Markov switching returns.

The equilibrium in the model described so far implies that trading strate-
gies and expectations are time-invariant. We also consider a real-time learning
and dynamic predictor selection version in order to study the model’s abil-
ity to capture empirical regularities in excess return dynamics. In this exten-
sion of the basic model, agents update in real time their parameter estimates
and a geometric average of past trading profits. They then decide on their
predictor and holdings of the risky asset conditional on these real-time esti-
mates. We demonstrate that, with the model calibrated to U.S. stock data, the
model regime-switching dynamics, as the model switches in real time between
equilibria, matches the Markov switching in returns found in Guidolin and
Timmermann (2007).

In addition to the least-squares learning approach, pioneered in finance by
Timmermann (1994, 1996) and further developed here, there is also a litera-
ture on Bayesian, or rational, learning. For example, Brennan and Xia (2001),
Lewellen and Shanken (2002), and Pastor and Veronesi (2003) show that intro-
ducing uncertainty about the process driving stock prices such as parameter
uncertainty, allowing agents to form priors and update them with real-time

In Barberis, Shleifer, and Vishny (1998), dividends follow a multilayered Markov chain that proxies for a simple
model in which there are two different Markov processes governing dividends, one with high persistence and one
with low persistence. Agents, though, only believe in one of the two models, hence the underparameterization.
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data, can generate returns that capture many features of the data. Guidolin and
Timmermann (2007, 2008) demonstrate the optimal portfolio implications of
Bayesian learning. The novelty of our theoretical model is its ability to gen-
erate multiple equilibria, which, as we demonstrate, are able to explain the
regime-switching return dynamics observed in data.

This article proceeds as follows. Section 1 presents the model. Section 2
presents theoretical results. Section 3 discusses the empirical implications and
presents the calibrated version of the model. Section 4 concludes.

. Asset Pricing Model with Restricted Perceptions

We employ a mean-variance linear asset pricing model, similar to DeLong
et al. (1990).5 We make this assumption for two analytical reasons: first, so
that demands remain bounded; second, so that demand is linear. One can jus-
tify the assumption based on a log approximation to exponential utility with
(perceived) Gaussian returns in an overlapping generations framework.”

There is a single risky asset that yields a dividend stream {y,} and trades at
price p;, net of dividends. There is a risk-free asset that pays a rate of return
R = ﬂ_l > 1. Households, at time 7, solve

a
max E; Wy — EE’* Var, Wy
2t
subject to

Wirr = RWr + (Pra1 + Yev1t — Rpo)zs,

where E* denotes (possibly) non-RE, z; is the holdings of the risky asset, p is
its price, y are dividends, and R > 1 is the risk-free rate of return. We assume
that dividends follow a stationary AR(1) process,

Vi = (1= p)yo+ pYyi—1 + &,

where &; is mean-zero with variance 052. In equilibrium, the demand for shares
must equal supply. The usual assumption is that the supply of shares is con-
stant and normalized to one. We, however, assume a stationary AR(1) process
representing the supply of shares:

Zst = (1 — @)so + PZsr—1 + 1.

The stochastic disturbance v; is mean-zero, with variance avz, and is possibly
correlated with e,—that is, we allow for o, # 0.

A similar modeling strategy is pursued in Grossman and Stiglitz (1980), Brock and Hommes (1998), and Hong,
Scheinkman, and Xiong (2006), among many others, in assuming that agents optimize with respect to the mean-
variance efficient frontier.

See Branch and Evans (2008) for details of an overlapping generations model that leads to an exogenous share
supply process.
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As previously mentioned, we interpret the share process Z;; as a proxy for
asset float. Asset float is the change in the supply of shares usually after a
lock-up period following an initial public offering. Recent papers by Cochrane
(2005), Lamont and Thaler (2003), and Hong, Scheinkman, and Xiong (2006)
show that float can have an effect on price. We view asset float and the supply
of shares more generally so that it also includes stock repurchases. Assuming
that the supply of shares follows an AR(1) is an obvious analytic device. This
article is a first step at incorporating equilibrium underparameterization and
learning into an asset pricing model and leaves a more comprehensive theory
of asset share supply to future research. In the calibrated version of the model,
below, we estimate an AR(1) for share supply using U.S. data.

There are two types of agents, each omitting some relevant information from
their forecasting model when they solve the above problem. One type omits the
role of supply in affecting price, while the other omits the dividends process.
We make this assumption to bring some realism to the asset pricing model.
Because of a preference for parsimony, agents are assumed to underparameter-
ize their model. This is the same motivation of Hong, Stein, and Yu (2007) in
the case where agents omit a portion of the dividend process from their fore-
casting model. Heterogeneous expectations also arise in Hong, Scheinkman,
and Xiong (2006). A novelty to our approach is that we endogenize the param-
eters and distribution of agents across these underparameterized models. In
contrast to Hong, Stein, and Yu (2007), we emphasize parameter and trading
strategy uncertainty in self-referential models. Although we assume that divi-
dends are a univariate stochastic process, one could easily extend dividends
and share supply to bivariate VAR processes along the lines of Branch and
Evans (2006a). The main innovation of our approach is that we pin down
both the forecasting model parameters and the distribution of agents across
models as an equilibrium object. We then can use real-time learning to study
the dynamics and to speculate on the model’s ability to address financial
market puzzles.

Each agent type j solves

j 5 4 22
nzl;‘_tXRWt + E; (PH—I + Vi+1 — RPt) Zjr — Eajtzjt’
where 01.2[ = Var;:(pi4+1 + Y1+1 — Rp;) is the subjective conditional variance
of the excess rate of return. An important feature of our analysis is that the
value of o2 will be pinned down in equilibrium. The first-order condition leads
to the demand for type j of

(N R
zji = —5 E{ (prv1 + i1 — Rpy) .
ClO’jt

The responsiveness of demands z j; to expected rates of return depends on ao}t,
which will be convenient for us to call “perceived risk.” Note that perceived
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risk is a product of the subjective conditional variance, an equilibrium object,
and the degree of risk aversion, a.

Financial market equilibrium requires that price adjusts to ensure mar-
ket clearing. Let n denote the fraction of agents with expectations Et1 In
equilibrium,

nzi + (1 —n)zy = 2y,

which leads to the equilibrium process for stock prices,

-1
n 1—n n 1 l-n , .
pe=B0Go+py) +Bl—+—> s E piv1 +——=E pry1 —Zs |
ac{, aoj, aoy, aoy,
(1

where for convenience we write 8 = R~!. To derive Equation (1), we have
assumed that E!§,41 = E?$+1 = Yo + pyr, and y, = 3 — yo are dividends
written in deviations from mean form.

We envision underparameterization in part because degrees of freedom con-
straints prevent agents from regressing price on all available information.
Agents know the univariate processes for dividends and supply, but we assume
that agents do not incorporate both elements into their forecasting model for
price. It might appear contradictory that agents know the processes for divi-
dends and supply, yet do not use all known information when forecasting stock
price. In this simple setting, this is, perhaps, unrealistic. But, if one thinks of all
of the factors that might be influencing dividends, share supply, and price, the
total number of factors with nontrivial predictive power would exceed degrees
of freedom constraints. If dividends and share supply were actually high-order
vector autoregressive processes, possibly correlated, then forecasting future
dividends and supplies are curtailed by the number of parameters of the model.
For example, an n-variable VAR(p) has n? x p coefficients to estimate, plus
the parameters of the autocovariance matrix. At the monthly frequency, the
degrees of freedom would quickly evaporate.

Hong, Stein, and Yu (2007) and Barberis, Shleifer, and Vishny (1998) also
assume underparameterized forecast models, although they impose particular
misspecified models exogenously. These authors instead motivate the assump-
tion by appealing to psychology research that suggests people forecast using
simple paradigms or reference models. One could also extend their motivations
to our approach. Our theoretical interest, though, is to impose some modeling
discipline on these deviations from full information: in our framework, within
the context of their forecasting models, agents are unable to detect their mis-
specification. Remarkably, the theoretical and empirical implications of this
approach are rich.
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Agents forecast by projecting a perceived law of motion (PLM) for price.
The set of PLMs, given the underparameterization restriction, are

PLM, : p, = b} +biy +n
PLM;: p = b(% + b%zst + s,

where 7, is a perceived exogenous white noise shock, and zg; = Zs; — so. This
implies expectations of the form

E!pis1 = b} + b py;

Elpis1 = bj + bipzy.

Plugging these expectations into Equation (1) leads to the following actual law
of motion (ALM) for price:

-1
n 1—n n | l—n,
pr=p|y+ s+ — 5by + ——-b5 — 0

aalt aazl aalt aozi

—1
n 1—n n
+8 1+{ >+ 2} =by | pyi
ClO’lt ClO’zt aa“

-1
n 1—n 1—n
+Bl—+— } [ 5 b§¢—1]zsz,

aoy; aoy, aoy,
or
pr =&0(n) + & (W)y: + E2(n)zss, 2
where
i 1 - 1
n —n n —n
&o(n) =p yo—l—{ =+ 2} ( ~by + zbg—so)
aalz aaZz aa]t a02t

n 1—n B noq
El(n):ﬁ 1+ 2+ 2 2b1 P

n 1—n - 1—n ,
§r(n) =B > +— a2b2¢—1.
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In the sequel, we will suppress the dependence of &; on #. In a rational expec-
tations equilibrium (REE),

g = (yo — ao?so)

1-8

_ PBp
él_l—ﬂp
_ Bac?
52__1—,8¢

and 0% = (1 4+ &)%02 + 52203 is the REE value for the perceived riskiness of
the risky asset.

Although agents in the model are assumed to have underparameterized fore-
casting models (restricted perceptions), we require that they forecast in a sta-
tistically optimal manner. We require that the forecast model parameters are
optimal linear projections. That is, the belief parameters b/, j = 1, 2, satisfy
the following least-squares orthogonality conditions:

E (L, y) (EO + &1y +&2zg — bé — biy,) =0 3)
E(1,z5) (%.0 + &1y + &2z — b(z) — b%Zst) =0 4)
or
b(/) = é;:o’ ] — 172
bl =& +&r
b = & + &7,

where r = Evy;z5/E ytz, F = Eyizat/E zgt. Orthogonality conditions like
Equation (3) or (4) appear frequently in the macroeconomics literature. For
example, Sargent (1999) and Cho, Williams, and Sargent (2003) define a self-
confirming equilibrium with respect to a very similar condition. Evans and
Honkapohja (2001) show that under adaptive learning, an underparameterized
forecasting model may converge to a set of parameters that satisfy an orthogo-
nality condition like Equation (3). Many other applications that employ Equa-
tion (3) are discussed in Branch (2006) and Sargent (2008). The key feature of
orthogonality conditions like Equations (3) and (4) is that within the context of
their forecasting model, agents are unable to detect their misspecification.?
Underparameterized expectations affect not only agents’ subjective ex-
pected return of stocks but also their subjective conditional variance of

8 Of course, if they step out of their model and run specification tests, they could detect the misspecification.
Below, we will see in real-time simulations that they may still choose, for finite time, underparameterized
models.
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stock returns. Thus, bé, b{ implies perceived ojzt = E,(p,+1 + P11 —

j o 2 . i . .
E] (piq1 + y[+1.)) - Given the solutions for b}, b], the restricted perceptions
values for perceived conditional variances are

52 2.2 %-2
o2 =[a+&)+ 2 ol — 263 prEyz + —2 -0 (5)
—p 1—¢
2 _ "3 2 2 i~ 5 2¢2 2\ 2
oy =1 +&)? + 1 s oy —2&;ppFEyz + 12 +&5 ) o,. (6)

Clearly, the restricted perceptions equilibrium (RPE) values for b! , b{ depend
jointly on 012 for j = 1, 2. The existence of an RPE is nontrivial.

Given exogenous processes yr, Zs, and &;, 012 Jj = 1,2, and given the pro-
portion n of agents using forecast model j = 1, an RPE is then defined as a
stochastic process {p;} of the form (2), where the coefficients satisfy

1 7]
B n 1—n
fo=——|Y—1—=t+t——= 0|

1-8 ao{ aoj
1 — Ben __ Bonr 7!
4 4 Z{LJH;"} pr
§i| _ {“uz 022} e B
& | | __ped-mi | _ _BU-nm¢ {Lﬁl;;}
o 05 o 05 .

A general existence result is not available; &1, & depend nonlinearly on (712, 022,
whose solutions also depend nonlinearly on &, &. However, the following
result holds in the most empirically relevant case of very weakly correlated
dividends and share supply and values of n € {0, 1}.°

Proposition 1. Letr, 7 — 0. For sufficiently small values of @ and n € {0, 1},
there exists an RPE.

Proposition 1 establishes an existence, and not a uniqueness, result. Under
the conditions of the proposition, for both n = 0 and n = 1, there exist two
RPEs, corresponding to two distinct values each for 012, 022. Of the two RPE
values for o2, one goes to +00 as a — 0. The solutions in the numerical
examples and the calibrated model below correspond to the choice of the
smaller root for 012. Selecting the smaller RPE values for 012 is natural because

it is the RPE that would be stable under real-time learning.

All proofs are in the Appendix.
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Although agents in the model are underparameterizing their forecasting
models, each agent’s forecast does reflect the influence of that part of the omit-
ted variable that is correlated with the variables used in their forecast. This
property arises because of the orthogonality condition, which is satisfied in
equilibrium: b/ depends on the two reduced-form parameters £, & and also on
the regression coefficient (r, 7). In addition, asset prices aggregate and reflect
all available information—in this sense, asset prices are partially revealing.

It is important to note that the model is self-referential: b’ and a/.z, hence &;,
are not free parameters but are equilibrium objects. For similar reasons, we do
not want to treat n as a free parameter and now proceed to make it endogenous.
In consequence, although agents use misspecified forecast models, there are
still important cross-equation restrictions imposed on the dynamics that are
analogous to the restrictions obtained under fully rational expectations.

In order to pin down n, we need a metric for evaluating forecast success. In
order to stay in line with the assumption that agents are mean-variance max-
imizers, we also assume that agents adjust their trading profits for variance
when deciding on forecast success. Thus, we assume that each agent ranks the
two forecasting models according to

j_ _a -

U —En, 20JEth,
where 7/ = (pi41 + $1+1 — Rp:) 2js, and E is the (unconditional) expecta-
tions operator. Note that U/ measures the profits in certainty equivalence units
of the good.

The Appendix computes 7; and Ez?t for j =1, 2. Predictor selection
depends on the difference in fitness measures. Define F (n) [0,1] - R
as F(n) = U' — U? = (En} — En?) — (a/2)(0}Ez}, — 07EZ3,). Then we
can write this expression as

1 2 2
F(n) = W(Bo + ByEy; + By;Eyizs + BEz,),

where By, By, B;, and By, are given by
—aﬂst (of —03)

n02 + (1 — n)012

By = —(of — 03) (&1 — o) [51(1 — 2Bp) — Bl + B*p*05 (5 — r7E7)

B, = —(of —03)&5(1 — 2B¢) + P20 (P& — &F)
By =2(1 — Bo)(of — 03)&2 [Bo — &1(1 — Bp)] — 2B%¢p(FEfof — rEF07).

Note that By, By, B;, and By, are functions of n because &1, &, 0]2, and 022
depend on 7.

As in our earlier papers, we follow Brock and Hommes (1997) in assuming a
multinomial logit (MNL) approach to predictor selection. The MNL approach

By =
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has a venerable history in discrete decision making and is a natural way of
introducing randomness in forecasting into the present environment. Young
(2004) argues that randomness in forecasting, much like mixed strategies in
actions, provides robustness against model uncertainty and flexibility in envi-
ronments with feedback. In this setting, agents are selecting their forecasting
models from a discrete choice set, and they are uncertain about the best fore-
cast model specification, and so the MNL map is natural in this setting:

. exp(aU")
~exp(aU!) + exp(aU?)’

which can be written
1
n= 3 [tanh{aF(n)} + 1] = Ty (n). @)

In particular, T : [0, 1] — [0, 1] is a continuous and well-defined function pro-
vided that an RPE exists.

Definition. An ME n* is a fixed point of the map T: n* = T (n™*).

By Brouwer’s theorem, an ME exists in this model provided that an RPE
exists. The T-mapping is indexed by the parameter «, which is typically called
the “intensity of choice” parameter. Since the MNL map derives from a ran-
dom utility setting, finite values of o parameterize deviations from full utility
maximization. The “neoclassical” case is « — oo. Our interest is mainly in
equilibria where all agents choose only the best-performing statistical model,
and so we will focus on the o — o0 case.

. Analytic Results
It is useful to rewrite the function F(n) as

F(n) 1 (
Ey} - 2aﬁ2612022

1
BOE_y,2 + By + By;r + B; Q) ,
where Q = E zfr /E y,z. The number and nature of ME depend on the properties
of F(n).

These are complicated expressions, and general results are not available.
However, using the argument in Branch and Evans (2007), the following result
can be used to characterize possible equilibria:

Proposition 2. Let N} = {n*|n* = T, (n*)} denote the set of ME. In the case
of large o, N* has one of the following properties:

1. If F(0) < Oand F(1) < 0 (Condition P0), then n* =0 € N*.
2. If F(0) > 0and F(1) > 0 (Condition P1), then n* =1 € N*.
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3. If F(0) <0 and F(1) > 0 (Condition PM), then n* € {0, 7, 1} C N*,
where n € (0, 1) is such that F(n) = 0.

4. If F(0) > 0 and F(1) < 0 (Condition P), then n* =n € N*, where n €
(0, 1) is such that F(n) = 0.

Because we do not know, in general, whether F' is monotonic, we cannot
rule out the existence of additional equilibria besides those listed. When Con-
dition PO or Condition P1 holds, then either n* = 0 or n* =1 is an ME. If
Condition PM holds, then both n* = 0 and n* = 1 are ME. Thus, Condition
PM is a sufficient condition for multiple equilibria and is the case that will re-
ceive further attention below. Condition P implies that there exists an interior
ME with heterogeneous expectations. In Branch and Evans (2006a), we said
that when Condition P holds, the model exhibits intrinsic heterogeneity. We
explore the existence of intrinsic heterogeneity in a companion paper. Notice
that under Condition PM, there must also be an interior equilibrium 7 for large
«. However, because F(n) is a continuous function, Condition PM implies
that, whenever F () is monotonic, this equilibrium satisfies 7’ (F (7)) > 1 and
hence is unstable. Conversely, under Condition P, for large «, there is an 7 at
which F (n) crosses through zero from above, and, as we showed in our earlier
paper, this equilibrium is locally stable. Similarly, when F(n) is nonmono-
tonic, it is possible for interior stable equilibria to exist.

Proposition 2 does not state under which circumstances these conditions will
arise. In fact, it does not even state if all of the cases are possible. The signs of
F(0), F (1) depend in a complicated way on ¢, p, a, 082, ovz, and Egv.

Corollary 3. Conditions PO, P1, PM, and P can each be satisfied for appro-
priate choices of structural parameters.

Numerical examples are given below.
Additional analytical results are available for certain limiting cases of
interest. In particular, we have:

Corollary 4. Assume p, ¢ > 0 and 59 = 0. For |r|, |F| sufficiently small we
have:

. .. . —B2p* .
(i) Condition PO holds if Q > AT (250

. . : —B2p*(1-B¢)* .
(ii)) Condition P1 holds if Q < P2 (Po—1) (ol =027

. : —Bp*(1-p¢)’
@iii) Condition PM  holds if 22 (CBo-1)(07—0?)—F9707) < Q<
_/32)04

a20? (— (07 —02)(1-2B¢)—0 2 B2¢2)(1—Bp)? "
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This corollary shows the importance of risk aversion and the relative vari-
ance of supply shocks. For a given Q, values of perceived risk ac? that are
neither too high nor too low lead to multiple equilibria even in the case of low
contemporaneous correlation between the exogenous shocks.

2.1 Some intuition

There are two exogenous processes driving asset prices: dividends and the sup-
ply of shares. Both stochastic processes, though, have two effects in Equation
(1): the direct effect and an indirect effect acting through expectations.'® The
number and nature of equilibria depend on the balancing of these two effects.
Notice that p, depends positively on expectations. Thus, whether these direct
effects are positively or negatively projected onto the asset price depends on
the equilibrium belief parameters, which in turn depend on the equilibrium
proportion of agents adopting the dividend forecasting model.

The feedback effects are

Elpis1 = &0+ (&1 + &Er)py,
EXpi1 =& + (82 + E17) 2y

and ajzt = Var,‘/ (pi+1 + Y1+1)- Notice in the expressions for &1, & in the spe-

cial case above of r, 7 — 0 that ac? directly influences the size of & and that
& is negative (because zg; has a negative direct effect):

__Br
&1 =T
ac?p
— J - : —
£ = l_ﬁ(l_n)(p,J—l,zlfn—l,O.

In this case where the shocks are uncorrelated, r = ¥ = 0, beliefs reinforce
the direct effect of dividends and supply of shares. Multiple equilibria arise
naturally in this case for a range of perceived risk. The condition on a required
for multiple equilibria puts bounds on the importance of the direct effect of
Zs¢ relative to dividends. If ac722 is large, then the share supply forecast model
always dominates, whereas when aalz is sufficiently low, the dividend model
is necessarily superior. For intermediate values of perceived risk, either model

can emerge as an equilibrium.

2.2 Numerical examples

In this subsection, we turn to numerical examples to illustrate our theoretical
results. In each case, we plot the T-map, F'(n), 012 (n), and 022 (n). We are inter-
ested in large o, so we set « = 10,000. Above, we presented analytic results,

Strictly speaking, the timing of the model is that dividends are paid at time 7 + 1, so that it is expected dividends
that matter for price. Since agents have common beliefs on dividends, these have a common effect on stock
prices, as specified in Equation (1).
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for the special case of weakly correlated exogenous processes, and provided
some more general intuition. We here choose particular parameter values to
illustrate the rich theoretical properties of the model.

2.2.1 Multiple equilibria. We adopt the parameter values p = 0.4, ¢ = 0.6,
B=.950,=1250,=1,0,. =0.25a = .1, and yyp = so = 0. For these
parameter values, r = .2763, 7 = .16842. Figure 1 plots (clockwise starting
from the northwest frontier): the T-map, the RPE values for 012 and 022, re-
spectively, and the risk-adjusted profit difference function F(n). Each fron-
tier plots these values against n. An ME occurs when the T-map crosses the
45-degree line.

Notice first that F'(n) is monotonically increasing with F(0) < 0, F(1) > 0.
As a result, the northwest panel demonstrates that there are multiple equilibria,
in particular at n = 0, n = 1. This result is in line with our earlier intuition
of the effect of positive feedback in self-referential models. In this case, there
exist three equilibria. Notice, though, that the interior equilibrium occurs at 71
where F(n) = 0. This equilibrium is unstable in the sense that T7/(7) > 1, and
so under a real-time learning and predictor selection dynamic, as considered
below, we would not observe the interior equilibrium as an outcome.

1 2.6
0.8 : 25
. 06 2.4
5 o~
F 04 2.3
0.2 2.2
0 2.1
02 04 06 08 1 0O 02 04 06 08 1
n n
0.05 2.8
o - 27
2.6
£ -0.05 o 25
Y 0 24
2.3
-0.15 59
-0.2 2.1
0 02 04 06 08 1 0O 02 04 06 08 1
n n
Figure 1
Multiple ME.
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Bifurcation diagram.

In the rightmost panels of the figures, 012 (n), 022 (n) are plotted. These panels
illustrate the manner in which perceived risk depends on the distribution of
agents across misspecified forecasting models.

The propositions and these numerical examples suggest that a, the degree of
risk aversion, plays a significant role in the nature of the equilibria. To study
this further, Figure 2 plots the comparative static effects of changes in a, on
the value of n*, for the parameterization used to generate Figure 1. In partic-
ular, Figure 2 is a bifurcation diagram with a as the bifurcating parameter. To
generate the figure, we consider all values of a in the interval [0, .15] and plot
all corresponding fixed points to 7.1

Figure 2 plots the bifurcation diagram. For low values of a, there is a unique
equilibrium at n = 1; for medium a, there are multiple equilibria; and for large
enough a, there is a unique equilibrium at n = O thereafter. These results are
in line with Corollary 4. A similar diagram, of course, exists for Q, the relative
variance of dividends.

In Brock and Hommes (1997), the “intensity of choice” parameter o was treated as a bifurcation parameter. In
this article, we are primarily interested in « — oo to concentrate on equilibria where all agents only choose the
best-performing models. Thus, in this stochastic setting, the degree of risk aversion is a more interesting and
relevant bifurcation parameter.
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. Empirical Implications: Markov Switching Returns and Variances

As a means of highlighting the model’s empirical implications, we focus on
two dynamic properties of asset markets that have received significant atten-
tion in the finance literature: regime-switching means and volatilities in excess
returns (c.f. Guidolin and Timmermann 2007). In the next section, we cali-
brate the model and demonstrate its ability to match these empirical features.
The current section aims to illustrate the channels through which the model is
capable of matching the empirical regularities.

3.1 Calibration

In this section, we assess to what degree the simple model presented here can
account for some empirical regularities in excess return dynamics. In order to
make a meaningful comparison, we need to choose parameter values for the
model. This subsection discusses our choice of parameter values.

For the purposes of the model at hand, the most crucial parameters for cali-
bration are the autoregressive parameters and covariances for the dividend and
share supply processes. Data on U.S. dividends are widely available. Data on
share supply are more limited. For share supply, we adopt the series con-
structed by Baker and Wurgler (2000).!2 Baker and Wurgler (2000) calcu-
late total new annual (nominal) equity issues in the United States. Ideally, one
would have a data series on all new issues, repurchases, bankruptcies, etc. Such
data are not readily available, and so the Baker—Wurgler data are the most com-
prehensive accounting of the U.S. time series of share supply. Figure 3 plots the
Baker—Wurgler data against simulated data drawn from the calibrated process
for share supply. We calibrate the dividend process from data on corporate
profits (after tax) and net dividends from the Economic Report of the Presi-
dent.!3 The data are reported in nominal terms, and we adjust them to 1995
dollars using the consumer price index obtained from the Economic Report of
the President.

Both dividends (or corporate profits) and share supply exhibit a trend. We
detrend the data and estimate an AR(1) for the resulting series. We then
calculate the associated AR(1) parameter and standard deviation implied by
this regression’s residuals. These are then used as the calibrated values for
0, ®, 0, 0y, and o,.. Table 1 reports the results.

The remaining parameters are 8, «, X, Y, k, and a. Following a large litera-
ture, we set § = .9975, based on the one-month risk free rate. The parameters
A, y govern the rate at which agents adjust their econometric estimates in a
real-time learning algorithm, to be introduced below in Section 3.2. Similarly,
k governs the rate at which agents adjust their estimates of the mean risk-

Data obtained from Wurgler’s Web site: http://pages.stern.nyu.edu/“jwurgler.

Specifically, we look at corporate profits with inventory evaluation and capital adjustments. The data are obtained
from Table B9O.
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Figure 3

Simulated and actual (detrended) share supply series. The simulated series is a representative sequence from the
calibrated AR(1) process. The U.S. share supply series is from Baker and Wurgler (2000), detrended using a
linear time trend.

adjusted profits for the alternative predictors. Essentially, A, x, and y are dis-
count rates yielding geometrically declining weights on recent forecast errors.
A = y is calibrated at .01, the value reported in a VAR forecasting exercise
in Branch and Evans (2006b). We choose a value of x = 0.5. Smaller values
of x imply more smoothing in estimating risk-adjusted profit differences and
implies fewer switching between equilibria. We found that the excess returns

Table 1

Calibrated parameter values

Parameter Calibration
¢ 0.6771
o 0.8837
o¢ 0.2235
oy 1.7
Oye 0

B 9975
a 145

A .01

y .01

K 50

o 2

Share data come from Baker and Wurgler (2000). Dividend and C.P.I.
data are from the 2005 Economic Report of the President, Table B9O.
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results reported below were robust to a range of values of «, although different
values had small effects on the estimated transition probabilities. Picking the
value for a is difficult. We choose a value that is empirically not implausible
and that leads to the kind of dynamics described above. The parameter a can be
thought of as the coefficient of absolute risk aversion. Most experimental stud-
ies tend to favor CRRA over CARA, although Holt and Laury (2002) report
values in the range of 0.1-0.2. In our model, given all of the other parameters,
a controls the basin of attraction between equilibria and so will have impli-
cations for the frequency of switching and the size of shocks that will induce
switching. We set a = .145. Smaller values of a tend to increase the proportion
of time spent near the n = 1 equilibrium, and larger values of a tend to increase
the proportion of time spent near the n = 0 equilibrium. Finally, we fix o = 2,
in line with the value considered large but finite in Brock and Hommes (1997),
although our results are robust to other values of «. Finally, we treat the con-
stants yp, so as free parameters by setting yg = 0.5, so = 0.70. We take this to
be an approximation to a time trend in dividends and share supply, a consid-
eration we abstract from for analytic convenience. For these parameter values,
there exist multiple ME.

3.2 Regime-switching excess returns

In the real-time learning and dynamic predictor selection version of the model,
agents do not have fixed beliefs. Beliefs are generated using least squares in
real time. Time-varying parameter estimates make it possible that a sequence
of shocks could move the economy from one equilibrium to another (in the
case of multiple ME). For this reason, agents will want to remain guarded
against the possibility of a regime change and choose their forecasting strategy
in real time as well.

Price is now given by the law of motion,

el P P 2 | P >
P =80(bg—1 b5, —1: 07 11 05—y i-1) +E1(B1 15 OF 12 05 m—1)
2 2 2
+&(bT 107 1505 115 —1)Zsr-

The timing of the model is that at the end of each period, agents update their
beliefs of b!, b2, 012, 022, their risk-adjusted expected profits, and their model
choice n. At time ¢, then, price depends on the real-time learning and dynamic
predictor selection from the end of period r — 1. We make this timing assump-
tion to avoid the simultaneity between prices and beliefs.'* Using recursive
least squares, the belief parameters are calculated as

.

6/ =6y + RS xju1 (P = 6 1x0m1). J=1.2,

14 See Evans and Honkapohja (2001) and Brock and Hommes (1997) for further discussion of these issues.

1669

2102 ‘6 1990300 UO QUIAI] ‘BIUIOJI[R)) JO AJSISATU() I8 /310 sTeuInolpI1oyxo’syy//:diy woiy papeofumo(g


http://rfs.oxfordjournals.org/

The Review of Financial Studies /v 23 n 4 2010

where
R..=R.: ) ( 2 R: ) i—=1.2
it R Tl git=1)s J s 25

is the estimated state covariance matrix, 6 = (b(J), b{ )/, and xi; = (1, y,),
x2; = (1, z5y)'. Using a similar recursive algorithm for the conditional vari-
ances of excess returns produces estimates

szl = szt—l + Vt((pf + }A}f - Etj—l(pf + }A)t))2 - szz—l)'

The terms A;, y; are typically referred to as gain sequences. Two cases are
assumed in the literature: a decreasing gain, A; = y; = +~! so that A, v — 0;
and a constant gain, A, = X € (0, 1), y; = y € (0, 1). With a decreasing gain,
convergence to the restricted perceptions values of b', b, o', and o2 is possi-
ble. Our interest, though, is in demonstrating the model’s implications for its
asymptotic dynamics, which will be the central interest in the calibrated ver-
sion of the model. Thus, we focus on the constant gain case, in which agents
respond to past forecast errors with time-invariant weights A, y .

In order to choose their predictors, agents also estimate in real time the (risk-
adjusted) expected profits:

EAUtj = EAJTZ N %UJZIEAﬁz,
where
Enlj =Eﬂ,j_1 +K((1/a0j2[)(pt + 9 — (1/13)1%_1)

X (E;/;]Pl + yvo+ pyi—1 — (1/,3)]%—1) _ Entjfl)

EAz% = Ez?t_l +K(((l/aaj2t)2(Eii71p,+yo+,0y;_1 — (l/ﬁ)pt_l)z—ﬁzﬁt_l).

We will also assume a constant value for «. Using this recursive estimate
of expected trading profits, the law of motion for predictor proportions now

follows:
n = ! (tanh [ﬁ (EU} - EU?)] + 1) .
2 2

We turn to simulations of the real-time version of the model to illustrate the
sense in which the model generates regime-switching excess rates of return.
We assume the calibrated parameter values from Table 1. Larger values for
k than A imply that agents are more concerned with the possibility of regime
change in equilibrium trading strategies than belief parameters. We draw initial
values for n, b/, 02, and R/, j =1, 2, randomly and then simulate the model
for a transient period of length 10,000 assuming a decreasing gain for X, k.
The assumption of a decreasing gain during the transient period ensures that at
the beginning of the simulation period, the model will be near their equilibrium
values. We then simulate the model using the calibrated constant gains for A, «.
Figure 4 plots the results from a typical simulation.
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Figure 4
Regime-switching excess returns.

In Figure 4, the solid line represents the simulated values for the excess
rate of return at monthly rates. Two interesting features arise. First, the rates
of return switch between periods of higher average rates and lower average
rates. Second, the periods of high rates of return coincide with periods of
high volatility, and low average rates of return coincide with lower volatility.
This leads to, in real time, the economy switching between high-return/high-
volatility periods and low-return/low-volatility periods. The switches between
these two regimes occur frequently and persistently. By way of comparison,
Figure 5 plots actual S&P 500 monthly excess rates of return over the period
1950-1986. Kim, Nelson, and Start (1998) find that the returns in Figure 5 are
consistent with a Markov-switching model in means and variances. The data
exhibit patterns very similar to the simulation in Figure 4.

The intuition for why the economy may switch from one equilibrium to
another revolves around the interaction between the exogenous shocks and the
gain parameters A, y, and «. A particularly large shock, mediated through be-
liefs via A, y, and «, may induce agents to switch forecasting models—thus,
jumping the economy from one basin of attraction to another. Because 1, y,
and « are positive constants, there are repeated realizations of shocks suffi-
ciently large to switch the economy between equilibria. The persistence in a
particular shock and the frequency with which these regime switches occur are
governed by a complicated interaction between the gain parameters X, y, and
k; the intensity of choice parameter «; and the stochastic shocks y;, zy;.
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Figure 5
Regime-switching excess returns in S&P 500 1926-1986.

This insight of real-time learning and dynamic predictor selection leading to
interesting and complicated long-run dynamics in excess returns is the moti-
vation for the next section, which turns to a calibrated version of the real-time
model.

One might wonder whether the switching between equilibria evident in Fig-
ure 5 might present an exploitable trading opportunity for agents who incorpo-
rate into their forecasting model both dividends and share supply. In the next
section, which gives further analysis of our calibrated version, we consider
several extensions in which an agent, given more information, will still select
parsimonious trading strategies.

3.3 Matching the data
There is a large literature on excess volatility and volatility clustering in re-
turns. For example, Turner, Startz, and Nelson (1989) find evidence for regime-
switching conditional heteroskedasticity in stock market returns. Bollerslev,
Chou, and Kroner (1992) find ARCH effects in stock returns. The discus-
sion of under-/overreaction above is a subset of a much broader literature on
long-run predictability of stock returns. Recently, one way this predictabil-
ity has arisen is through Markov switching in mean returns for financial vari-
ables (Ang and Bekaert 2002). There is also a literature that makes the link, at
the individual stock level, between idiosyncratic volatility and average returns
(Merton 1987). Guidolin and Timmermann (2005, 2007, 2008) provide evi-
dence for aggregate U.S. stock data that suggests that average returns and
volatility follow a finite-state Markov-switching process.

Section 2 showed that an empirical implication of the present model is that
excess returns may follow a regime-switching process, thereby exhibiting both
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Table 2
Summary statistics for simulated model and Guidolin and Timmermann (2007)

Regime-switching returns and volatility

léo R 1 (_7(% 5'12 0 T R
Simulated data 352 144 1728 .048 3998 .6002 .18
Guidolin—Timmermann data 358 0156 1291 1167 5327 4673 .0792

persistence and volatility clustering. We now study this issue more system-
atically by generating time-series data on excess returns from the calibrated
version of the model. Our methodology is to take the real-time learning and
dynamic predictor selection version of the model, as developed above, param-
eterize the model according to Table 1, and generate estimates of the means,
variances, and regime durations. We then compare our simulated results with
the estimates reported by Guidolin and Timmermann (2007). To generate these
estimates, we simulate the model for a transient period of length 10,000, and
we then store as data the next 5,000 periods. We identify the data in each
simulation according to its “regime”—that is, whether n = 0 or n = 1—and
within each regime, we calculate the average excess rate of return R -7 =01
and variance 012, Jj =0, 1. We repeat this 5,000 times and report the mean

estimates.!> Table 2 reports the mean value of these calculations across all
simulations and compares them to Guidolin and Timmermann.

Table 2 shows that the model yields volatility clustering and persistence in
returns. The n = O state has higher average excess returns than the n = 1 state
and higher volatility. Because the model switches between states, these patterns
are persistent across time. However, unlike in Guidolin and Timmermann, the
switches are not governed by a Markov chain but occur as unanticipated shocks
push the stock price from one basin of attraction to another. Estimates are
monthly at annualized rates.

Table 2 also shows that the calibrated model delivers estimates that are sim-
ilar to the data of Guidolin and Timmermann (2007). The table reports the
relative average returns and variances across the high and low states, calcu-
lated from the data in Guidolin and Timmermann (2007).'® The high state
has a return of the same magnitude as the simulated data; however, the vari-
ance is slightly lower in the data. For the low state, the simulated data have a
higher mean excess return and lower variance than reported in Guidolin
and Timmermann, although the magnitudes are reasonably close. The simple
model presented here delivers simulated data surprisingly close to U.S. stock

Numerical explorations suggest that 5,000 simulations of 15,000 periods each produced stable results, suggesting
that the model has converged to a unique invariant distribution.

Guidolin and Timmermann (2007) estimate a regime-switching model in which the means and variances depend
on a four-state Markov chain. We use their estimates to construct a corresponding two-state Markov chain.
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market data. A larger scale model, with more realistic shock processes, would
be likely to fit the data even better. Furthermore, an alternative approach to
calibration would be to estimate the model using indirect inference. We note
that other parameter choices, such as a smaller value for a, would lower the
within-regime average excess return but deliver an overall average return in
line with the data.

The results presented illustrate that in economic environments where traders
learn and fine-tune their models in real time, excess returns will exhibit regime-
switching means and variances. It is reasonable to wonder whether this conclu-
sion follows from the underparameterization restrictions we impose on agents,
or whether regime-switching dynamics may persist even when agents may
select from a fully specified model. In particular, would agents continue to
adhere to switching between underparameterized models if they observed data
like in Figure 4? To address this question, we report on the following experi-
ment. We augment the baseline model to include a third predictor: a bivariate
regime-switching model. Agents may choose from the two parsimonious mod-
els or may choose a bivariate model able to capture well the regime-switching
behavior exhibited above. We assume that the regime-switching model is a
threshold, or self-exciting, model as in Potter (1995), where agents who adopt
the bivariate model are assumed to believe that the regime is triggered by the
average excess rate of return over the previous three months rather than an
exogenous Markov chain. We assume that whenever the excess rate of return
is greater than R, the bivariate model identifies the market as being in the high
return period. In the results presented below, we set R = .15. The question we
ask is whether the underparameterized models would persist when a bivariate
regime-switching model may also be adopted by agents. Table 3 reports on the
results from this experiment, where the model is simulated for 40,000 periods
and the final values for ng, n1, ny are recorded and then averaged across 1,000
simulations.

When the gain on predictor fitness is small (¢« = .001), then, on average,
86% of the time agents will adopt the bivariate model. In this case, we also
find that the parameters of the bivariate model become close to those of the
REE.!” However, when the gain is set at a higher level (x = .5), agents will
use one of the two univariate models almost half the time. Furthermore, the
bivariate model itself exhibits regime-switching behavior, with substantially
different coefficients in its two states.'!® Thus, with higher gains for predictor
fitness, our model continues to exhibit regime-switching behavior even when
a bivariate model is available that could in principle converge to the REE.

In our experiments, we also confirmed an anologous result for decreasing gain sequences for «, except that
during the learning transition, the stochastic nature of the market leads to nontrivial fractions of agents to adopt
one of the more parsimonious model.

In essence, we then obtain a model with regime-switching between four states.
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Table 3
Average predictor proportions in simulations with a bivariate regime-switching
model choice

Results with a bivariate model as a choice

K no ny ny
.001 .0247 .1065 .8687
.50 222 2678 5122

Adding a small cost to using the more complex model, either to reflect the
costs of using more sophisticated models (as argued in Brock and Hommes
1997) or to incorporate a psychological preference for simple models, would
lead agents to rely on simple models in most periods.

Thus the findings of Table 3, for the case k = .5, strengthen our findings
of endogenous regime-switching returns and volatilities. When agents place
a sufficiently high weight on recent performance, they will frequently choose
one of the parsimonious forecasting strategies, even when a bivariate model is
available, and the bivariate model will itself have two distinct states. The com-
bination of high weighting on recursive estimates of the models and model
fitness with the self-referentiality of the model implies that, by luck, one of the
underparameterized models will appear to fit better. Traders will then coordi-
nate on that model whose success will be reinforced by the self-referentiality.
One might expect that the bivariate regime-switching model will still do better
but, as the results in Table 3 illustrate, the combination of high weighting and
self-referentiality will lead agents to occasionally select a parsimonious model.
Thus, endogenous regime switching can arise in a real-time setting even when
traders are not restricted to underparameterized models.

. Conclusion

This article has developed a theory of underparameterization and learning in
a simple asset pricing model. Asset price is driven by expectations of future
price and exogenous processes for dividends and the supply of asset shares,
where the latter is viewed as a proxy for asset float. Agents forecast price by
projecting it onto either dividends or share supply. Although agents are forced
to underparameterize, we assume that they attempt to do so in an optimal way,
through our twin assumptions that the forecast models impose the relevant
orthogonality conditions and that agents choose only models that maximize,
or almost maximize, risk-adjusted expected trading profits. In our framework,
model parameters and the distribution of agents across forecasting models
are jointly determined in equilibrium. The approach advocated in this article
can be seen as a generalization of Hong, Stein, and Yu (2007) and Barberis,
Shleifer, and Vishny (1998) to a framework in which parameters and models
are determined endogenously in equilibrium.
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We demonstrate that underparameterization and ME can arise in this simple
asset pricing model. Depending on the complicated interaction between the
exogenous processes and the degree of risk aversion of agents, multiple ME
can arise as an equilibrium outcome. Adding real-time learning and dynamic
predictor selection generates regime-switching dynamics in excess returns.

When the model is calibrated to U.S. stock data, we find that the model is
capable of capturing the regime-switching empirical features that have been
extensively documented in U.S. stock data. Because of the richness of the the-
oretical results and the broad empirical implications for excess returns, the
approach in this article seems to provide a suitable balance between RE and

fully behavioral approaches.

Appendix

Detailed computations for Section 1: It is straightforward to compute that
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Proof of Proposition 1. An RPE exists provided
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exists and real-valued solutions exist for o2, Jj = 1,2 in Equations (5)—(6). Let n take values in
{0, 1} and assume r, 7 are sufficiently small. Then when n = 0
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The RPE solution for 0‘22 is the solution to the above quadratic equation. It is straightforward to
see that as a — 0, one root tends to 400 and the other to 0. Similarly, when n = 1
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The larger root for the RPE solution of 012 tends to +o00 as a — 0. It follows that for a sufficiently
small, (712 has a real solution. It is straightforward to verify that the inverse exists under these
conditions. |

Proof of Corollary 4. Letsg = 0. Asr,7 — 0, we have
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Then straightforward algebra leads to the conditions in Corollary 4. |
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