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Abstract

This paper revisits the impact of fiscal shocks on inflation dynamics. Tra-
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– specifically, when Ricardian equivalence, or its failure, can arise endogenously.
Agents choose between two forecasting models: in one, Ricardian beliefs emerge
naturally; in the other, beliefs are non-Ricardian. A predictor selection process
guides these choices. Employing least squares learning in an estimated New
Keynesian model highlights the significant influence of fiscal shocks in the U.S.
within non-Ricardian belief regimes. However, learning dynamics also initiate
self-fulfilling transitions toward a Ricardian regime. Non-Ricardian beliefs gen-
erate significant wealth effects, particularly during the high inflation period of
the 1970s and 2021-22.
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1 Introduction
This paper offers a new perspective on the role of fiscal shocks in shaping inflation

dynamics by investigating the influence of endogenous changes in beliefs. Much of the
existing literature examines policy regime changes or explicit assumptions on beliefs,
that violate Ricardian equivalence. We develop a model instead that highlights the
importance of evolving beliefs as a key driver of departures from Ricardian equiva-
lence: with the exception of an edge case, households typically exhibit non-Ricardian
beliefs that impact consumption and, in turn, inflation. In doing so, we provide new
insights into the complex relationship between fiscal shocks, inflation, and the beliefs
held by economic agents. Our main finding, both theoretical and empirical, is as fol-
lows: evolving beliefs on their own generate fluctuations between non-Ricardian and
Ricardian regimes.

Our approach adopts a “restricted perceptions” framework, in which economic
agents possess imperfect knowledge of the economy and its dynamics (see, Evans and
Honkapohja, 2001; Branch and McGough, 2018; Woodford, 2013). This framework
allows us to explore the implications of agents’ imperfect knowledge on inflation dy-
namics and the emergence of beliefs that do not necessarily correspond to the true
state of the world. By focusing on the role of endogenous beliefs in driving inflation
patterns, we contribute to a deeper understanding of the mechanisms through which
fiscal shocks impact inflation within a conventional policy stance of a monetary author-
ity focused on price stability and a fiscal authority adhering to long-run government
solvency.

In our analysis, we utilize a standard New Keynesian framework as a laboratory for
our ideas. The starting point builds on Evans et al. (2012), Eusepi and Preston (2018),
and Woodford (2013), who show that Ricardian Equivalence can fail in models where
agents have imperfect knowledge about aggregate variables and whether the path of
future primary budget surpluses is sufficient to satisfy the government’s intertemporal
budget constraint. In these papers, imperfect knowledge and non-Ricardian beliefs
arise because least-squares learning generates temporary fluctuations around the ra-
tional expectations equilibrium. In contrast, our agents form subjective expectations
about payoff-relevant aggregate variables based on parsimonious forecasting models
and update these expectations using least-squares learning. We allow agents to choose
between two parsimonious forecasting models – one that includes the stock of debt and
is consistent with Ricardian beliefs, and another that includes the primary budget sur-
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plus but is inconsistent with Ricardian beliefs. Agents select the model that performs
best in terms of mean-squared error.

A theory of predictor choice between parsimonious models achieves two aims. First,
it captures that rational expectations may be prohibitively expensive in the presence of
significant computational and cognitive limitations. Still, with least-squares learning
and endogenous model choice, beliefs satisfy a set of cross-equation restrictions, a
salient feature of rational expectations. Second, the debt-based forecast model is a
close approximation to rational expectations when all agents forecast with it. Thus,
we do not a priori rule out Ricardian beliefs. In fact, estimating our model on U.S. data
suggests that a non-Ricardian equilibrium is a stable limit point to agents’ learning
and model selection. Occasionally, though, the economy escapes the non-Ricardian
equilibrium and Ricardian beliefs emerge for a stretch of time.

We define a Ricardian wedge as the distance between aggregate expectations and
full information rational expectations. The Ricardian wedge is determined by two
state variables: the distribution of agents across forecasting models and the coefficients
within each model. We highlight the fragility of Ricardian Equivalence, showing that
a necessary and sufficient condition for its validity is that all agents in the economy
use the same Ricardian model for forecasting. The presence of even an infinitesimal
fraction using an alternative model renders everyone’s beliefs non-Ricardian. This
fragility suggests that a non-Ricardian equilibrium is a plausible outcome of the learning
process. However, least-squares learning can also generate endogenous fluctuations
between Ricardian and non-Ricardian regimes.

Our empirical investigation, conducted using Bayesian estimation techniques, re-
veals the presence of non-Ricardian beliefs in the U.S. economy, with the extent of such
beliefs fluctuating over time. Notably, we find that inflationary periods during the late
1960s and 1970s were driven by a growing prevalence of non-Ricardian beliefs, while
disinflation and subsequent low inflation periods resulted from temporary shifts to a
Ricardian regime. This finding suggests that the key question is not why fiscal shocks
matter at certain times, but rather why inflation is not always a fiscal phenomenon.

Drawing parallels to the "Conquest" model by Sargent (1999), Cho et al. (2002),
and Sargent et al. (2006) our study also underscores the pivotal role of evolving beliefs
and regime shifts in inflation dynamics. These earlier models demonstrate how a
central bank’s time consistency problem combined with occasional shocks that alter the
policymaker’s view on the inflation-unemployment trade-off, can temporarily reduce
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inflation to its efficient rate. Our findings suggest a similar dynamic, though with
emphasis on private sector expectations: shifts towards a Ricardian regime, albeit
temporary, can lead to disinflation.

The empirical analysis confirms the prevalence of non-Ricardian beliefs within the
U.S. economy. Specifically, the high inflation of the 1970s, and its resurgence in 2021-22
can be traced to the economy transitioning towards a non-Ricardian belief equilibrium.
This pattern reaffirms the inherent fragility of Ricardian equilibria and the importance
of endogenously non-Ricardian beliefs.

The remainder of the paper is organized as follows: Section 2 presents the economic
environment and the theory of restricted perceptions, along with Bayesian model es-
timates and comparisons. Section 3 offers theoretical insights that shed light on the
fragility of Ricardian equilibria and the role of least-squares learning in reaching non-
Ricardian limit points. Section 4 discusses the main empirical findings. Finally, sections
5 and 6 review the related literature and provide concluding remarks.

2 Model: specification and estimation
We begin by describing the economic environment, beliefs, and equilibrium concept.

Then, we estimate the model’s parameters using Bayesian methods.

2.1 Woodford’s (2013) model

The setting is a New Keynesian model, based on Woodford (2013), where house-
holds and firms have subjective beliefs about payoff-relevant aggregate variables.1

Given these beliefs, households choose consumption, leisure, and one-period govern-
ment debt, the only asset available to households, to solve their intertemporal opti-
mization problem. In Woodford’s (2013) framework, households turn over wage-setting
and labor supply decisions to a union and are obligated to supply labor to a firm on
the union’s terms. Households also receive a lump-sum transfer of their share in firm
profits.2 This is a stylized assumption that renders the household’s consumption rule

1The model environment is a simplified version of Eusepi and Preston (2018) where there are
two assets, one-period government bonds in zero net-supply and longer maturity bonds. Eusepi and
Preston (2018) demonstrate the role that maturity structure, combined with imperfect knowledge and
learning, can play in generating non-Ricardian wealth effects.

2The shares in firms are illiquid, which makes government debt the only storable good. Eusepi
and Preston (2018) show that this assumption is consequential for non-Ricardian beliefs. Though
we abstract from these issues, it is worth bearing in mind that the issue is relevant within our non-
Ricardian equilibrium.

4



analogous to the one in a model where the household receives a stochastic endowment.
However, because firms are monopolistically competitive and face a Calvo (1983) nom-
inal pricing friction, there is endogenous variation in hours and output. All exogenous
shocks follow stationary AR(1) processes.

Households. Woodford (2013) derives an individual’s consumption function,

cit = (1− β)bit +
∞∑
T=t

βT−tEi
t{(1− β)(YT − τT )− βσ(βiT − πT+1)

+ (1− β)sb(βiT − πT )− β(c̄T+1 − c̄T )}, (1)

or, written recursively as

cit = (1− β)
[
bit + (Yt − τt)− sbπt

]
− β[σ − (1− β)sb]it + βc̄t + βEi

tv
i
t+1, (2)

where vit is a subjective composite variable that comprises all payoff-relevant aggregate
variables over which a household formulates subjective beliefs:

vit = (1− β)(Yt − τt)− [σ − (1− β)sb](βit − πt)− (1− β)c̄t + βEi
tv

i
t+1.

The variables, written as log-deviations from steady-state, bit, Yt, πt, it, τt, c̄t are, re-
spectively, the individual’s holdings of real government debt, aggregate output, the
inflation rate, the nominal interest rate, lump-sum taxes, and a preference shock. The
government uses lump-sum taxes and debt to finance its consumption of an exogenous
sequence Gt. The parameter 0 < β < 1 is the discount rate, σ is the elasticity of
intertemporal substitution, and sb ≡ b̄/Ȳ is the steady-state debt-to-GDP ratio. The
fiscal policy instrument is the real primary surplus st ≡ τt −Gt.

The consumption function takes a standard permanent income formulation relat-
ing consumption to the annuitized present-value of financial and non-financial income.3

The first two terms in (1) dictate how consumption responds to government bond hold-
ings and disposable income, respectively. The first term is sometimes called a “wealth
effect”. The third term, parameterized by σ, captures an intertemporal substitution
effect resulting from variations in the (perceived) ex-ante real interest rate. The fourth
term, pre-multiplied by sb, is the perceived real return on government bond holdings.

3Derivation of (1) is entirely standard. We refer readers to Woodford (2013) for details.
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Woodford (2013) describes this term as an “income effect.” Note from the final term
that a positive preference shock, c̄t, implies a stronger desire for contemporaneous
consumption.

Following Eusepi and Preston (2018), Woodford (2013) derives equation (1) without
assuming that individuals have structural knowledge about the government’s intertem-
poral budget constraint. Even though there is passive fiscal policy, individuals do not
necessarily know this or the other structural features of the economy, so that they may
have imperfect knowledge about the structural form of the government’s endogenously
determined budget constraint. Instead, they form subjective beliefs over the evolution
of aggregate variables.4 If they get those beliefs right, they will properly account for
the evolution of debt, and their beliefs will be Ricardian. Otherwise, beliefs may be
non-Ricardian.

Ricardian beliefs arise with the following condition on beliefs

Ei
t

{
∞∑
T=t

βT−t [sT − sb(βiT − πT )]

}
= bt. (3)

By imposing Ricardian beliefs onto the consumption rule (1), (3) directly imposes that
the household properly forecasts the path for future surpluses. Without assuming (3),
there are potentially non-Ricardian effects in current bond holdings (“wealth effect”)
and the perceived present value of the future real returns on bonds (“income effect”).
Ricardian beliefs, therefore, lead to a consumption rule that depends only on the
household’s subjective beliefs about future paths for disposable income and real interest
rates. Conversely, by not a priori imposing Ricardian beliefs, households may perceive
their current bond holdings and anticipated future real returns as real wealth, and a
change in the expected path for future surpluses can have a real effect on consumption.
See Appendix 6 or Woodford (2013) for details.5

Firms. Monopolistically competitive firms face a nominal pricing friction based on
4On the surface, formulating expectations over future vit seems to be adopting the Euler equa-

tion approach of one-step ahead forecasting and decision-making. However, the derivation of the
consumption function and vit is based on the infinite-horizon approach where the household’s con-
sumption/savings decisions solve their entire sequence of Euler equations, flow budget constraints,
and transversality condition given their subjective beliefs. We show below how these consumption
rules can be aggregated with heterogeneous agents.

5In all of the analysis below, the fiscal rule is ex post Ricardian, i.e., real primary surpluses will
satisfy the government’s intertemporal constraint. However, out of equilibrium, non-Ricardian beliefs
could be consistent with explosive debt. The consequences of this, and its implications for strategic
behavior, is an old issue in the fiscal theory of the price level literature (cf., Bassetto, 2002).

6



Calvo (1983). An individual firm j produces a differentiated good. With probability
0 < α < 1, it will adjust its previous price by the long-run target rate of inflation,
assumed to be zero, and with probability 1− α, a firm receives an idiosyncratic signal
to (optimally) reset the price. A firm j that can optimally reset price p∗t (j), relative to
the previous aggregate price level pt−1, will do so to satisfy the log-linear approximated
first-order condition, written recursively,

p∗t (j) =(1− αβ)
(
Ej

t p
opt
t − pt−1

)
+ (αβ)Ej

t p
∗
t+1(j) + (αβ)πt,

where Ej
t p

opt
T is the perceived optimal price in T . The aggregate inflation dynamics are

πt = (1− α)p∗t , where p∗t ≡
∫
p∗t (j)dj. (4)

Policy. Monetary policy is described by a Taylor (1993) rule,

it = φππt + φyyt + wt, (5)

where the monetary policy shock follows wt = ρwwt−1 + εwt, εwt ∼ N(0, σ2
w).

A Leeper (1991) rule for the real primary surplus characterizes fiscal policy:

st = φbbt + zt, (6)

where the surplus shock is zt = ρzzt−1+ εzt, εzt ∼ N(0, σ2
z). The government also faces

a flow budget constraint

bt+1 = β−1[bt − sbπt − st] + sbit. (7)

The steady-state debt-to-GDP ratio sb plays a role in the results presented below.
When sb = 0, the bond and primary surplus paths are exogenous, while sb > 0 implies
that they are endogenous and affected, in part, by monetary policy.6

Throughout, the analysis focuses on the active monetary and passive fiscal policy
6This formulation arises in a cashless environment that allows us to abstract from the effect of

monetary aggregates appearing in the consolidated budget constraint.
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regime:

1 < φπ +
1− β

κ
φy

(1− β) < φb < 1.

Under the benchmark rational expectations hypothesis, there is local determinacy (see,
Leeper, 1991) implying that this locally unique rational expectations equilibrium dis-
plays Ricardian equivalence and is stable under least-squares learning (see, Evans and
Honkapohja, 2007).

2.2 Temporary equilibrium with heterogeneous beliefs

The income-expenditure identity is given by

Yt =

∫
citdi+Gt. (8)

Combining (2) and (8) with the bond-market clearing condition bt ≡
∫
bitdi, computing

vt ≡
∫
vitdi, and averaging over expectations, allows us to express aggregate demand

as the “IS equation” without a priori imposing Ricardian beliefs:

yt = gt − σit + (1− β)bt+1 + Êtvt+1, (9)

where yt ≡ Yt − Y n
t , gt ≡ c̄t +Gt − Y n

t is a composite exogenous disturbance, such that
gt = ρggt−1 + εgt, εgt ∼ N(0, σ2

g). The aggregate expectations operator Ê is defined as
Êt (x) =

∫
Ei

t (x) di, for any variable x.
Given that heterogeneous beliefs lead to a non-degenerate cross-sectional wealth

and consumption distribution, some readers may be surprised that individual household
bond holdings do not appear in the aggregate demand equation. However, this results
from several simplifying assumptions in Woodford (2013). First, assumptions about
the labor market and the distribution of firm profits imply that future non-financial
income is a proportion of aggregate output beyond the agent’s control. So, household
consumption decisions depend on expectations about variables beyond their control.
Second, in this setting, a temporary equilibrium path consists of local perturbations
around a non-stochastic steady-state in which all agents hold identical beliefs. In this
sense, households’ beliefs are not too heterogeneous. Finally, household debt holdings
enter linearly in the approximated economy, and, as a result, individual bond holdings
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do not matter for the aggregate output path.7

On the firm side, applying the law of iterated expectations and aggregating across
all firms results in an aggregate New Keynesian Phillips Curve:

πt = (1− α) βÊtp
∗
t+1 + κyt + ut,

where κ ≡ [(1−α)(1−αβ)ζ]/α, and the cost-push shock is ut ≡ {[(1−α)(1−αβ)]/α}µt,
with ut = ρuut−1 + εut, εut ∼ N(0, σ2

u).
We now define a temporary equilibrium for this economy.

Definition 1 Given a distribution of beliefs
(
Ei

tvt+1, E
i
tp

∗
t+1

)
i

a temporary equilibrium
is a triple (bt+1, πt, yt) and a policy (st, it) so that the bond and goods markets clear and
the government budget constraint is satisfied. In particular, the following equations are
satisfied

bt+1 = β−1 [bt − sbπt − st] + sbit

πt = (1− α)βÊtp
∗
t+1 + κyt + ut

yt = gt − σit + (1− β)bt+1 + Êtvt+1

vt = (1− β) (bt+1 − bt)− σ (it − πt) + Êtvt+1.

2.3 Model misspecification

This section details expectation formation.
2.3.1 A restricted perceptions approach

Under full-information rational expectations, the equilibrium law of motion takes
the form  πt

vt

yt

 = A

[
bt

st

]
+ ηt,

where ηt is a vector of composite disturbances and A is conformable. It follows that to
formulate rational expectations, the agents adopt linear forecast rules that depend on
the stock of beginning-of-period debt, bt and the primary surplus, st.

7An extension to a setting where heterogeneous expectations give rise to a non-trivial aggregate
role to the cross-sectional wealth distribution is potentially important but beyond the scope of the
present study.
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In our framework, agents navigate their information landscape, optimizing their
statistical forecasts based on their available information and abilities. Drawing from the
econometric learning literature and the “cognitive consistency principle” as outlined by
Evans and Honkapohja (2001), we model agents as skilled economists: they favor well-
specified yet parsimonious econometric models. Parsimony is an appropriate response
to the complexity of economic forecasting and the inherent limitations on degrees of
freedom. Moreover, as Andre et al. (2022) show, forecasters often adopt narratives
that guide their selective use of information, i.e., they do not use all information even
when it is available. Our model captures this dynamic, allowing for the endogenous
evolution of these narratives over time.

Explicitly, we assume that computational and cognitive limitations render full infor-
mation rational expectations prohibitively expensive.8 Consequently, we assume that
agents forecast using one of two parsimonious models, each incorporating a single fiscal
variable – either st or bt. This approach not only enables a straightforward formal-
ization of endogenously (non-)Ricardian beliefs but also aligns with empirical studies
that utilize a limited number of fiscal indicators (Favero and Giavazzi, 2012).

By adopting this parsimonious modeling approach, we facilitate the emergence of a
restricted perceptions equilibrium (RPE) wherein agents’ expectations come from the
linear projection of aggregate variables onto the space spanned by their parsimonious
models. In a misspecification equilibrium (ME), the population distribution across the
two forecasting models is determined endogenously by agents’ discrete choices. Com-
bined, the equilibrium distribution allows for the possibility of Ricardian equivalence
emerging endogenously from agents’ model choices.

While our equilibrium concept relaxes the model consistency of rational expecta-
tions, it maintains many cross-equation restrictions characteristic of rational expecta-
tions models. Our approach is particularly suited to the study of fiscal shocks and
inflation, given its ability to capture endogenous regime shifts and its roots in the long
tradition of empirical research using a limited set of fiscal indicators.

Admittedly, the restriction on regressors in agents’ econometric models is some-
what ad hoc. However, alternative specifications for misspecified beliefs would require
agents to possess extensive knowledge about the structural features of the economy

8It would be straightforward, but very costly to estimate, an extension that includes a third choice
which consists of all variables but at a cost. In equilibrium the three models would produce mean-
square forecast errors of a similar magnitude. Thus, for a sufficiently large cost there would continue
to be a distribution across all models and each model, including the correctly specified model, would
be non-Ricardian. This latter fact is a consequence of the model’s self-referentiality.
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– knowledge that extends beyond their models and includes the beliefs, constraints,
and decision rules of other agents, such as the government’s commitment to satisfying
solvency constraints. Our approach, by contrast, offers a more natural and tractable
way to model the influence of endogenous beliefs on inflation dynamics.
2.3.2 Equilibrium

Expectations come from one of the following forecasting models, or, perceived laws
of motion (PLM):

PLMs : Zt = ψ
s′Xs

t−1 + ηt ⇒ Es
tZt+1 = ψ

s′Xs
t

PLMb : Zt = ψ
b′Xb

t−1 + ηt ⇒ Eb
tZt+1 = ψ

b′Xb
t ,

where Z′
t = (vt, p

∗
t , bt+1), Xs

t = (st, gt, ut, wt, zt)
′, Xb

t = (bt, gt, ut, wt, zt)
′, ηt is a per-

ceived noise, and the coefficient matrix, for k = {s, b},

ψk =
(
ψk,Γk

)′
,

ψk =
(
ψk
v , ψ

k
p

)′ and Γk is the coefficient for bt+1.9 In a restricted perceptions equilibrium
(RPE) the coefficients will satisfy the least-squares orthogonality condition:

EXk
t−1

(
Zt −ψk′Xk

t−1

)′
= 0.

Beliefs, parameterized by ψk, are derived from the optimal projection of the aggre-
gate variables Zt onto the restricted explanatory variable xkt . It follows that

ψk =
[
EXk

t−1X
k′

t−1

]−1

EXk
t−1Z

′
t ≡ S

(
ψk
)
.

Definition 2 A restricted perceptions equilibrium is a fixed point ψk
∗ = S

(
ψk

∗
)
.

We do not impose a priori which of the PLM’s individuals and firms use to form
expectations. Instead, we confront them with a discrete choice: they can forecast by

9A brief remark about a timing assumption. Here, we follow Woodford (2013), in assuming that
agents project the state variables onto the lagged regressors. We could alternatively assume that they
regress the state onto contemporaneous regressors and it would not greatly impact the equilibrium
results. However, the timing convention followed here has two benefits. First, it simplifies many of the
analytic expressions. Second, in the quantitative analysis below, we implement a real-time learning
version of the model and the timing avoids a potential multicollinearity problem.
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including st (“model-s”) or bt (“model-b”), and like the selection of model parameters,
they will do so to minimize their forecast errors. We adopt the rationally heteroge-
neous expectations approach first pioneered by Brock and Hommes (1997), extended
to stochastic environments by Branch and Evans (2006). Agents make a predictor se-
lection in a random-utility setting, and the agents will only select the best-performing
statistical models in the limit of vanishingly small noise.

Let n denote the fraction of agents selecting model-s, leaving 1−n of the population
forecasting with model-b.10 They rank these choices by calculating the relative mean
square error (MSE):

EUk = −E
[
(Zt − Ek

t [Z
k
t ])
]′ ×W × E

[
(Zt − Ek

t [Z
k
t ])
]
, k = {s, b}, (10)

where W is a weighting matrix.11 We define relative predictor performance F (n) :

[0, 1] → R as F (n) ≡ EU s − EU b.
The distribution of agents across the two forecasting models, n, is pinned down

according to the multinomial logit (MNL) map (see, e.g., Branch and Evans, 2006)

n =
1

2

{
tanh

[ω
2
F (n)

]
+ 1
}
≡ Tω(n),

where ω denotes the “intensity of choice”. The MNL map – also, the “T-map” – states
that the fraction of agents adopting model-s, n, is an increasing function of its relative
forecast accuracy, measured by the function F (n).

Definition 3 A misspecification equilibrium is a fixed point n∗ = Tω (n∗).

An immediate consequence of the continuity of Tω : [0, 1] → [0, 1] is that there exists
a misspecification equilibrium: see Appendix B for analytic details on existence. The
neoclassical case ω → ∞ warrants special attention. In this case, agents only select the
best-performing statistical models. It turns out that, in this case, one can learn quite a
bit about the set of misspecification equilibria by studying the endpoints to F (n). For
instance, when F (0) < 0, F (1) < 0 – that is, the model-b forecasts best when all agents
use model-b, or, if they all use model-s – then n∗ = 0 is a misspecification equilibrium.

10For simplicity, we assume that households and firms are distributed across models identically, a
simplification that could be relaxed. Instead, there could be a distribution nh of households across
models and a fraction nf of firms. It would be straightforward to generalize this way at the cost of
an expanded state vector.

11For simplicity, and without loss of generality, we set W = I.

12



Conversely, when F (0) > 0 and F (1) > 0, then n∗ = 1 is a misspecification equilibrium.
Outside of these polar cases, there is also the possibility of multiple misspecification
equilibria, n = {0, n̂, 1}, for some 0 < n̂ < 1, that arises when F (0) < 0, F (1) > 0. As
we will see, the n = 0 misspecification equilibrium is a self-confirming equilibrium with
weakly Ricardian beliefs, and the n = 1 will correspond to homogenous non-Ricardian
beliefs.12

The neoclassical limiting case, ω → ∞, helps build intuition, but a finite ω is rele-
vant in practice. The multinomial approach, i.e., a finite ω, has a venerable history in
discrete decision-making because it provides an elegant way of introducing randomness
into discrete decision-making. Young (2004) shows that randomness in forecasting,
much like mixed strategies in actions, provides robustness against model uncertainty
and flexibility in self-referential economies. The intensity of choice parameter ω is
inversely related to the idiosyncratic random utility innovation and, thereby, param-
eterizes model uncertainty. In particular, larger values of ω parameterize less model
uncertainty with the neoclassical case ω → ∞ representing no uncertainty at all. Ex-
tensive literature tests for dynamic predictor selection using empirical MNL models
and typically finds finite values for ω (c.f. , Branch, 2004). The parameter ω is an
object in our estimation below.
2.3.3 Learning

The rational expectations hypothesis posits that subjective expectations do not
have an independent role in the data-generating process, as cross-equation restrictions
enforce consistency between agents’ perceived and true laws of motion. A misspecifica-
tion equilibrium also comprises a set of cross-equation restrictions that emerge through
the least squares orthogonality condition. However, this paper focuses on the evolution
of beliefs between (non-)Ricardian regimes, and thus, we develop a real-time learning
model that converges to a misspecification equilibrium as its limit point.

Our learning model is a recursive adaptive algorithm with a constant gain, which
assigns geometrically declining weights to past observations (see Marcet and Sargent,
1989; Evans and Honkapohja, 2001). This learning rule exhibits several notable fea-
tures. First, it is a robust estimator in the presence of model misspecification and
uncertainty (Evans et al., 2010), and it performs well econometrically when coefficients
drift. Real-time learning and model selection generate both of these characteristics.

12For discussion of self-confirming equilibria see Sargent (1999). A self-confirming equilibrium is
a stronger concept than RPE as it requires that agents’ beliefs are correct, though they may be
misspecified off the equilibrium path.
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Second, the learning model extends the vector of state variables to include beliefs, en-
abling it to account plausibly for the persistence observed in U.S. macroeconomic data.
Many modelers use medium-scale New Keynesian models that incorporate persistence
mechanically through habits and price indexation. However, it has been shown (see
Milani, 2007) that estimated New Keynesian models favor specifications where inertia
arises endogenously through beliefs.

Finally, the real-time learning approach captures endogenous regime-switching be-
liefs in our empirical model while adhering to our restricted perceptions perspective.
The key to interpreting the model estimates lies in understanding how learning can
generate an "escape," as described by Sargent (1999), Cho et al. (2002), and Williams
(2019). This feature allows our model to capture the dynamic nature of agents’ beliefs
as they respond to evolving macroeconomic conditions.

Extending the two restricted forecasting models to this more general environment,
we can write

Ek
t xj,t+1 =

(
ψk
j,t−1

)′
Xk,t−1,

where, for j = {v, p} and k = {s, b}, xj,t ∈ {vt, p∗t}, andX ′
k,t−1 = (kt−1, gt−1, ut−1, wt−1, zt−1).

The shocks follow uncorrelated stationary AR(1) processes with parameters ρj, σj and
σij = 0 for all i, j ∈ {g, u, w, z}. The econometric learning process is a recursive
Bayesian model based on Evans and Honkapohja (2001):

ψk
j,t = ψk

j,t−1 + γ1ΓXk,t−1

(
xj,t −

(
ψk
j,t−1

)′
Xk,t−1

)
(11)

MSEk
j,t =MSEk

j,t−1 + γ2

[(
xj,t −

(
ψk
j,t−1

)′
Xk,t

)2
−MSEk

j,t−1

]
(12)

EUk
t = −MSEk

v,t −MSEk
p,t

nt =
1

2

{
tanh

[ω
2

(
EU s

t − EU b
t

)]
+ 1
}
.

Equation (11) is a generalized stochastic gradient algorithm that emerges from a
Bayesian time-varying parameter model where the coefficients follow a random walk.13

The parameter 0 < γ1 < 1 is the “constant gain” as it governs the responsiveness of
parameter updating to recent forecast errors. The parameter Γ controls the direction of
drift in the parameters. In our empirical application, we adopt the standard stochastic

13A constant gain least-squares algorithm is another commonly employed version of econometric
learning. This algorithm looks similar but replaces the parameter Γ with a recursively estimated
covariance matrix for the regressors. The latter substantially raises the computational cost of the
empirical procedure.
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gradient with Γ = I.14 It is evident from the stochastic gradient algorithm that it nests
the restricted perceptions equilibrium. Equation (12) is a simple recursive estimator
of the mean-squared forecast errors that geometrically discounts at rate (1− γ2). The
learning gains, γ1, γ2, are critical objects in the estimation as they control the relative
speed of coefficient updating and model selection. If these estimated gain coefficients
are significantly different, the dynamical system is a “fast-slow” system, a feature stud-
ied by the literature on large deviations (Dupuis and Ellis (1997)). The idea is that
slow-moving variables can generate large fluctuations that occur infrequently but with
high probability.

2.4 Empirical results

Our main interest is an empirical assessment of the role played by endogenously
(non-)Ricardian beliefs. To that end, we first describe the Bayesian methods used to
estimate the model’s key parameters and assess model fit vis a vis a restriction to
rational expectations or only Ricardian beliefs.
2.4.1 Empirical methodology

After plugging in the policy rules, expectations, and recursive updating equations
for the learning rules, the model, in non-linear state space form, is:

Xt = g (Xt−1,Θ) +Q(Xt−1,Θ)νt

Wt = f(Xt, υt),

where the state vector is

X ′
t =

(
bt+1, πt, yt, vt, st, gt, ut, wt, zt, nt,MSEst,MSEbt, vec (ψ

s
t ) , vec

(
ψb
t

))
,

vec (·) is the vectorization operator, the observation variables are

W′
t = (yt, πt, st, bt+1, it) ,

and the parameter vector is

Θ′ = (κ, α, φπ, φy, φb, ρg, ρu, ρw, ρz, σg, σu, σw, σz, ω, γ1, γ2) .

14As in Sargent and Williams (2005), it is an avenue for future research to consider the role different
priors about the direction of drift impacts time-varying Ricardian beliefs.
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The measurement and state disturbances are υt, νt respectively. Our sample for the
observed variables is 1955.1-2007.3.15 We measure yt as the log difference between
output and the CBO’s measure of potential output. We measure πt from the PCE
index. We compute bt and st as the debt-GDP ratio and primary surplus-GDP ratio,
respectively. All variables are deviations from the mean and annualized.

The empirical exercise aims to identify reasonable values for the parameters in Θ to
explain the U.S. economy over the sample period. We are especially interested in infer-
ences on the latent state variable, nt, measuring the extent of (non-)Ricardian beliefs
over the period. To this end, we adopt Bayesian methods and use a simulation-based
technique called the particle filter to approximate the likelihood function p(Yt|Θ). The
endogenous predictor selection and learning render the state-space non-linear, making
the analytic calculation of the likelihood intractable. In place of a Kalman Filter, we
adopt the Bootstrap particle filter as described in Herbst and Schorfheide (2015). The
particle filter is a way to produce recursive approximations to the distribution of the
latent state variables Xt. Our algorithm samples the posterior distribution through
an adapted Random-Walk Metropolis-Hastings (RWMH) MCMC technique with the
particle-filter-based estimate of the likelihood function. A detailed discussion of the
MCMC-particle filter algorithm, the priors, and its implementation is in Appendix C.
2.4.2 Parameter estimates

Table 1 reports the means and the fifth and ninety-fifth percentiles of the marginal
posterior distributions of the parameters. In the estimation, we fixed the parameters
β = 0.99, sb = 0.30, and σ = 2.00. The parameter estimates are mostly in line with
previous estimates in the literature, with a few notable exceptions described below.

We briefly discuss the key parameters associated with endogenously (non-)Ricar-
dian beliefs. The “intensity of choice” parameter, ω, has a mean estimate of 6.301.
This estimate is close to the value of 5.04 estimated by Cornea-Madeira et al. (2017)
from a benchmark New Keynesian model with heterogeneous expectations. The speed
of adjustment in estimating the relative forecasting accuracies of the two models, γ2,
has a mean estimate of 0.091, implying that model selection averages past forecast
errors with a geometric decay of 0.909. The interpretation of this value is that the
memory size for model selection is approximately 11 quarters. The 5/95% intervals
imply a range of memory from 9.7-12.7 quarters. The mean estimated gain for coef-

15We end the sample before the ZLB episode as incorporating an effective lower bound on interest
rates is beyond the scope of the present paper. Below, we consider the model’s performance in an out
of sample forecasting exercise.
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Table 1: Posterior distribution of parameters

90% credible region

Parameter Mean 5% 95%

Structural parameters
κ 0.392 0.351 0.433
α 0.584 0.538 0.630

Policy parameters
φπ 1.854 1.665 2.042
φy 0.119 0.105 0.132
φb 0.062 0.034 0.091

Exogenous shocks
ρg 0.050 0.007 0.093
ρu 0.343 0.296 0.389
ρw 0.305 0.262 0.347
ρz 0.860 0.814 0.907

100σg 0.631 0.429 0.833
100σu 0.141 0.002 0.281
100σw 1.440 1.359 1.526
100σz 0.235 0.117 0.353

Learning parameters
ω 6.301 4.428 8.174
γ1 0.002 0.000 0.003
γ2 0.091 0.079 0.103
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ficient updating, γ1, is 0.002. This value is on the lower end of previously reported
estimates. For instance, Eusepi and Preston (2018) reports a value of 0.035, closer to
the high end, but for a different learning model and without the forecast model selec-
tion. The relative values for γ1, γ2 imply that these estimates suggest fast-slow learning
dynamics. Model selection takes place faster than coefficient estimation in response
to past data. As we see later, these gain parameters imply recurrent, but persistent,
belief changes.

The estimated Taylor-rule policy parameters are in line with previous estimates
(e.g., Eusepi and Preston (2018), Justiniano et al. (2011)) and suggest an active mon-
etary policy. While the estimated reaction coefficients are higher than these earlier
papers, the coefficients are smaller than the active monetary/passive fiscal regime in
Bianchi and Ilut (2017). The fiscal policy reaction coefficient is close to the mean value
reported in Eusepi and Preston (2018). The estimated shock processes are also similar
to existing estimates. One difference is that the estimated process for the aggregate
demand shock is less volatile and persistent than typical estimates. However, we in-
clude serially correlated monetary policy shocks, whose innovations have the highest
variance among the set of shocks considered. The estimated fiscal shocks are also the
most persistent.

Two parameters whose estimates differ somewhat from many estimates in the lit-
erature involve the slope of the Phillips curve and the degree of price rigidity in the
economy. For the latter, we estimate that prices update, on average, every 2.4 quarters
more frequently than the typical range of 4-7 quarters. This estimate is in line with
Klenow and Kryvtsov (2008). Finally, the slope of the Phillips curve is on the high
side and considerably higher than in Eusepi and Preston (2018).

We can assess the empirical relevance of the non-Ricardian belief mechanism via
the Bayes factor comparing our model to a version that fixes the fraction n at the
temporary (non-)Ricardian equilibrium, i.e., nt = {0, 1} in all periods. When we make
this comparison, we find that the difference in log marginal likelihoods is in favor
of the model with endogenously (non-)Ricardian beliefs and whose difference totals
5.7180 when n = 0 and 7.026 when n = 1. The Bayes factor takes the product of the
ratios of the marginal likelihoods and the prior probabilities for each of the two models.
The empirical evidence favoring the model with non-Ricardian beliefs is substantial in
that the data will prefer that model over the Ricardian or fully non-Ricardian versions
for any prior ratio below 304.29 and 1,125.40, respectively. Thus, a researcher would
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have to be a priori more confident in a rational expectations ( i.e., self-confirming
expectations) model by a factor of over 300 to reject the model with non-Ricardian
beliefs.16

3 (Non-)Ricardian Beliefs: mechanics
An important component to the empirical findings is that the learning dynamics

have a non-Ricardian equilibrium as its limit point, but also feature occasional de-
partures (escapes) to the Ricardian restricted perceptions equilibrium. This section
establishes two theoretical facts, key to understanding this mechanism. First, Ri-
cardian beliefs are fragile in the sense that non-Ricardian effects arise for any n > 0.
Second, one can always find an intensity of choice parameter ω so that a non-Ricardian
equilibrium exists.

3.1 Fragility of Ricardian beliefs

We begin by establishing that Ricardian beliefs arise as a knife-edge result.
When n = 0 – all agents forecast with model-b – then a (weak) Ricardian result

arises with fiscal shocks having only a transitory impact on inflation. For any n > 0, on
the other hand, beliefs are non-Ricardian and fiscal shocks have a persistent inflationary
effect. For expositional clarity, we will simplify the model slightly. Assume the only
shock is an iid surplus shock zt, φy = 0, and let sb → 0, i.e., the long-run debt-output
ratio is small. Each assumption is inconsequential to the result:

Proposition 1 (Weak) Ricardian Equivalence obtains if and only if n = 0, that is all
agents forecast with the debt-model.

Proof. Notice in this simplified setting that

bt+1 = β−1 [bt − st]

it = φππt

Êtp
∗
t+1 = nψs

pst + (1− n)ψb
pbt

Êtvt+1 = nψs
vst + (1− n)ψb

vbt.

16Of course, this model comparison is just on those beliefs within this paper’s economic environment.
One might have a subjective prior for a different environment and need to compute the associated
marginal likelihood.
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It follows that in a temporary equilibrium

πt = ξpbt + ξzzt

vt = ξvbt + ξ̃zzt.

The expressions for ξ are complicated functions of n and the ψ’s, but simplify below.
For the moment, hold n fixed and focus on extrinsic heterogeneity. Within a re-

stricted perceptions equilibrium,

Est−1

{[
πt

1−α

vt

]
−

[
ψs
p

ψs
v

]
st−1

}
= 0

Ebt−1

{[
πt

1−α

vt

]
−

[
ψb
p

ψb
v

]
bt−1

}
= 0.

Solving the orthogonality conditions leads to the belief coefficients

ψb
p = β−1ξp(1− φb)/ (1− α)

ψb
v = β−1ξv(1− φb),

and,

ψs
p =

φbψ
b
p

β2 + 2φb − 1

ψs
v =

φbψ
b
v

β2 + 2φb − 1
.

Substituting in for ξp, ξv and solving, leads to restricted perceptions equilibrium laws
of motion

πt = ξp (n) bt + ξz (n) zt

vt = ξv (n) bt + ξ̃z (n) zt.

We are now in a position to establish the claim. Let n = 0. Then,

ψb
p = 0

ψb
v = −β−1 (1− β) (1− φb) .
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It follows that ξp(0) = 0 and

πt = − (1− β)

β (1 + κσφπ)
zt.

Fiscal shocks have a purely transitory impact on inflation. Furthermore,

Êtvt+1 = −β−1 (1− β) (1− φb)bt.

The expected continuation value equals the expected present-value of future taxes,
given by the current debt-level. Thus, when n = 0, higher stocks of government debt
have no real impact and the output gap is

yt = −(1− β) [1 + κσ (φπ − 1)]

β (1 + κσφπ)
zt.

Now suppose that n → 0. It turns out that ξp(0), ξ′p(0) > 0. By continuity,
ξp(n) > 0 and ξ′p(n) > 0. Inflation now depends directly on the stock of debt, the
expected continuation value deviates from the expected present-value of future taxes,
and Ricardian Equivalence fails.

Ricardian beliefs are fragile because only when beliefs are exactly correct will house-
holds correctly anticipate the path of future surpluses. Otherwise, they treat the stock
of government debt as real wealth, which impacts both inflation and the output gap.
This failure of Ricardian beliefs occurs even for a vanishing fraction of agents forecast-
ing with the surplus model. Outside of the n = 0 restricted perceptions equilibrium,
both types of agents have non-Ricardian beliefs.

3.2 Regimes

Figure 1 illustrates the full breadth of regimes consistent with the model. Most
of the literature focuses on a perfect knowledge/rational expectations setting. The
assumed policy setting implies that perfect knowledge produces a Ricardian regime.
This paper focuses, though, on restricted perceptions. When n = 0, the model features
a Ricardian regime. The regime is weakly Ricardian, though, because fiscal shocks
can still have a transitory impact. The Ricardian regime, though, is fragile as any
heterogeneity in beliefs, i.e. n > 0, leads to a non-Ricardian regime.

Determining n endogenously determines which regime we might observe in equilib-
rium. A complete characterization of misspecification equilibria is beyond the scope of
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Figure 1: Classification of regimes.

22



this paper. However, it is possible to provide a sufficient condition for existence of the
non-Ricardian regime.

Proposition 2 For a sufficiently small intensity of choice ω, there exists a non-
Ricardian misspecification equilibrium 0 < n̂ < 1.

Recall that the population distribution across models is given by the T-map Tω(n),
which is a function of the relative forecast accuracy of the surplus-based model. With
the two forecast models producing forecast errors similar in magnitude (i.e. bounded)
then, because of the continuity of Tω, it is always possible to find an ω such that
0 < n < 1. Essentially, with modest differences in forecasts between the two models
we should expect agents to be distributed across both models. It turns out that this is
the empirically relevant case. Our estimates imply an equilibrium value of n̂ ≈ 0.48.

3.3 The Ricardian wedge

When n = 0 – everyone forecasts with model-b – beliefs are Ricardian. For any
n > 0, beliefs are non-Ricardian. When agents are learning there are two sources for
deviating from Ricardian beliefs: the choice of model, summarized by nt, and coefficient
updating ψk

j,t, j = {v, p}, k = {s, b}. Estimated parameters in Table 1 show that these
components evolve at different rates γ1, γ2.

Thus, we define a function R
(
n,
{
ψk
j

}
, Xt

)
that provides a distance measure be-

tween aggregate beliefs and Ricardian beliefs. We define the Ricardian wedge by the
function

R
(
n,
{
ψk
j

}
j,k
, Xt

)
=
(
Êtp

∗
t+1 − Er

t p
∗
t+1

)2
+
(
Êtvt+1 − Er

t vt+1

)2
,

where Er denotes the expectations that would arise in a n = 0 world.17 The Ricardian
wedge is an appropriate distance measure for the impact of non-Ricardian beliefs on
expectations about all payoff relevant aggregate variables.

4 (Non-)Ricardian beliefs: estimates
We turn to our main interest: measuring the impact of endogenously (non-)Ri-

cardian beliefs on U.S. inflation. We begin with the estimated path for inflation and
17Below, it will be apparent that this wedge is isomorphic to one that calculates the distance to

what a zero-mass fully rational agent would expect given the actual temporary equilibrium learning
path.
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the output gap along with a decomposition into non-Ricardian effects. The evidence
clearly points towards endogenous fluctuations between Ricardian and non-Ricardian
regimes. We then study what drives these fluctuations by identifying the “most likely
unlikely” sequence of shocks that can trigger an escape from a non-Ricardian to a
Ricardian equilibrium. Counterfactual experiments deepen our understanding of the
interaction between macroeconomic outcomes and beliefs.

4.1 Endogenously (non-)Ricardian beliefs in the U.S.

In this section, we provide compelling empirical evidence to support the main thesis
of our paper: non-Ricardian beliefs play a significant role in explaining inflation dy-
namics, and the endogenous transition between non-Ricardian and Ricardian regimes
can account for both periods of disinflation and low, stable inflation. We begin by
estimating the (one step ahead) predicted state path E (Xt+1|Wt,Θ) via the particle
filter. From that predicted path, we can compute a decomposition of each data series
into (non-)Ricardian effects as well as compute the Ricardian wedge. Our findings are
presented in Figure 2 comprising four separate plots, each highlighting different aspects
of U.S. macroeconomic data from 1960 to 2007. In the first two panels, dotted lines rep-
resent U.S. data, dashed lines denote model-predicted values, and solid lines measure
the non-Ricardian effect by differencing model predicted values from a counterfactual
with Ricardian beliefs. The shaded regions in each panel form the 60% confidence
intervals, providing a clear visualization of the uncertainty around the estimates.

The first panel of the figure displays actual U.S. inflation rates, the model’s pre-
dicted inflation rate (computed as the one-step-ahead forecast from the particle filter),
and a series that aids in decomposing the contribution to inflation from non-Ricardian
effects. The non-Ricardian effect is measured by taking the difference between the
predicted inflation rate and a counterfactual where the private-sector has full infor-
mation rational expectations. This panel provides strong evidence that non-Ricardian
effects significantly influenced inflation during the 1970s, with high inflation in the
early 1970s being mostly non-Ricardian, and the high inflation at the end of the 1970s
being estimated to be entirely non-Ricardian. In contrast, inflation during the 1960s
was essentially Ricardian. The early 1980s disinflation was mostly Ricardian, while the
late 1980s, a period of large budget deficits, saw modest non-Ricardian inflation. The
1990s, characterized by substantial budget surpluses, exhibited weak non-Ricardian
effects that contributed to low inflation.
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Figure 2: Estimated state dynamics. Dotted lines are U.S. data. Dashed lines are
model-predicted values. Solid lines measure the non-Ricardian effect by differencing
model-predicted values from a counterfactual with Ricardian beliefs. Shaded areas
form the 60% credible interval.
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Overall, the model’s predictions capture the salient features of U.S. inflation rates.
The model does not completely capture the volatility in inflation rates, particularly
between 1960-1973. However, the non-Ricardian effect series also shows that learning
and endogenously non-Ricardian beliefs captures substantially more of the variation in
inflation than would occur, with the same sequence of shocks, under rational expecta-
tions.

The second panel presents the output gap, the model’s predicted output gap, and
the counterfactual between the model’s prediction and rational expectations. It demon-
strates that non-Ricardian effects on the output gap are more modest than those on
inflation. During the 1960s and 1970s, non-Ricardian predicted output gaps did not
correlate strongly with actual U.S. output gaps. In the late 1980s, the decomposition
indicates that most of the predicted output gap resulted from non-Ricardian effects.
However, during the 1990s, the model’s output gap does not adequately explain U.S.
output gaps. The early 2000s saw a strong non-Ricardian component in the output
gap.

The third panel, displaying the estimated Ricardian wedges, corroborates these
findings. The 1960s exhibit a wedge very close to zero, while a large wedge emerges
from the 1970s until the early 1980s. Another significant wedge appears in the late
1980s, followed by a modest wedge after the 2001 recession. When the Ricardian belief
wedge is large, predicted non-Ricardian components are also large.

The fourth panel, presenting the perceived non-Ricardian wealth gap, aligns with
our findings on non-Ricardian effects and inflation. The perceived wealth gap comes
from the aggregate Ricardian belief condition (2):

Wt = bt −
∑
T≥t

βT−tÊt {sb [βiT − πT ]− sT} .

The annuitized value Wt/(1−β) contributes directly to aggregate consumption. Under
Ricardian beliefs, the perceived wealth gap is equal to zero. So the expression provides
a direct measure of deviations in the perceived fiscal backing of debt (i.e., the present
value of future surpluses) and the wealth effect arising from non-Ricardian beliefs.

For the 1960s and early 1970s, the perceived wealth wedge is estimated to be
zero. At the end of the 1970s, households perceive a large positive wealth wedge,
indicating that people interpreted high real government debt levels as real wealth and
expected a correlation between inflation and debt. However, a strongly negative wealth
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(a) Inflation. (b) Output gap.

Figure 3: Decomposing (non-)Ricardian effects on inflation and output gap. Height
of the non-Ricardian bars represent the fraction attributable to non-Ricardian effects.

wedge occurs during the early 1980s disinflation, suggesting a correction to people’s
expectations about the present-value of future financial wealth. A similar negative
wealth wedge occurs with the more modest disinflation in the early 1990s.

Figure 3 helps to visualize the non-Ricardian decomposition in Figure 2. In each
panel, the box decomposes the fraction of the data series, in a given time period,
explained by the estimated non-Ricardian effect. Figure 3a shows that the 1970s are
strongly influenced by non-Ricardian effects. The non-Ricardian effects are a very
small fraction of overall predicted inflation during the subsequent disinflation. Non-
Ricardian effects on inflation appear again in the late 1980s and 1990s. Figure 3b
similarly estimates regimes with (non-)Ricardian effects. These effects are not as strong
or persistent as for inflation.

The most compelling part of these figures is that fluctuations between Ricardian
and non-Ricardian regimes occur endogenously, in response to economic shocks, and
without policy change. The next section turns to what shocks drive beliefs to fluctuate
between belief regimes.

By closely examining the figure, readers can clearly see how the non-Ricardian
effects have a significant impact on inflation dynamics, while endogenous transitions
between non-Ricardian and Ricardian regimes help explain periods of disinflation and
low, stable inflation. This strong evidence in favor of our thesis is further reinforced by
the consistency between the estimated Ricardian wedges and the non-Ricardian wealth
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gap.

4.2 What drives Ricardian beliefs?

The model estimates indicate an equilibrium with non-Ricardian beliefs and n̂ ≈
0.48. This equilibrium is a limit point to the learning process. In finite time, though,
learning dynamics can dislodge the economy from its stable equilibrium towards an-
other point. The estimated paths in Figure 2 show that the economy periodically
escapes its non-Ricardian equilibrium and a period of Ricardian beliefs emerge. Ac-
cording to the model estimates, non-Ricardian beliefs are the usual outcome, so the
natural question is what drives beliefs to be (temporarily) Ricardian?

This question is similar in spirit to the one posed by Sargent (1999) and Cho et al.
(2002). In their framework, there is no trade-off between inflation and unemployment.
The central bank, however, entertains the possibility of a Phillips curve and chooses
policy optimally given their estimates of the slope in their statistical Phillips curve.
The high inflation time-consistent Kydland-Prescott outcome is a restricted percep-
tions equilibrium and stable under central bank learning. However, the right sequence
of shocks can lead the central bank’s estimates to the low inflation optimal policy.
Eventually, time consistency re-emerges. Cho et al. (2002) and Williams (2019) de-
velop tools to identify the “most likely unlikely sequence of shocks” that drives learning
to escape the basin of attraction of the stable equilibrium.

We can apply a similar approach here to give insight into what types of shocks drive
the non-Ricardian beliefs to become Ricardian, particularly for the period following the
1970s inflation. Following Cho et al. (2002) and Branch and Evans (2011), we replace
the exogenous shocks with trinomial approximations. In particular, we assume that

gt ∈ {−σg, 0, σg}

ut ∈ {−σu, 0, σu}

wt ∈ {−σw, 0, σw}

zt ∈ {−σz, 0, σz}

Then, we draw deterministic sequences of shocks from this set; these are the “unlikely
sequences.” For each sequence, initialize the model in equilibrium, and simulate the
model for T = 200 periods. For each path, we calculate the non-Ricardian belief wedge.
An escape (from the non-Ricardian equilibrium) occurs when either the p∗- component
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Table 2: Escape paths to Ricardian beliefs.

escape time shocks
13 (σg, σu, 0, σz)
21 (σg, σu, σw,−σz)
22 (0, σu, σw, σz)
22 (0,−σu,−σw,−σz)
22 (−σg,−σu,−σw, σz)
26 (0, 0, σw, σz)
26 (σg, 0, σw, 0)
26 (−σg, 0,−σw, 0)
28 (0,−σu,−σw, 0)
43 (σg,−σu, σw,−σz)

or the v- component of the wedge is below 10−5. The escape time is the number of
periods, for a given shock sequence, until an escape occurs.

Table 2 reports the escape paths. The first row, with the shortest escape time, is the
dominant escape path. That is, the most likely unlikely sequence of shocks to drive the
economy from a non-Ricardian to Ricardian equilibrium are positive demand and cost
push shocks along with positive shocks to the budget surplus. We can interpret this
to say that the escape from the 1970’s non-Ricardian regime to the 1980’s Ricardian
regime was most likely the result of a sequence of shocks that reduces real government
debt. While positive surplus shocks have an immediate effect, demand and price shocks
increase inflation, which in turn reduces real government debt. Other shock sequences
produce more circuitous paths. In each case, the Ricardian equilibrium is unstable
under learning and so the paths under the repeated shock sequences eventually converge
to a “pseudo” steady-state.

The intuition for the dominant escape path is clear. This transition to a Ricardian
equilibrium occurs when individuals perceive that inflation and real government debt
are uncorrelated. The sequence of dominant shocks results in drifting inflation coupled
with a marked decrease in debt, primarily driven by repeated surplus shocks. However,
under the dynamics of fast-slow learning, the adaptation of beliefs occurs gradually.
These shocks lead agents using model-b to perceive a weaker correlation between infla-
tion and debt. This altered perception, in turn, weakens the feedback loop from debt
to inflation, reducing the regression coefficient of inflation on debt. Over time, this ad-
justment leads to model-b demonstrating a lower mean squared error. Given the faster
model selection, this creates a self-confirming path to the Ricardian equilibrium. See

29



Figure 4: Escape dynamics to Ricardian equilibrium. Thick line denotes the dominant
escape path (Table 2).

Figure 4 for all of the escape paths from the sequences in Table 2. Figure 5 decomposes
the Ricardian wedges in Figure 4 into their price and continuation value components.

Examining the relationship between the Ricardian wedge and estimated shock se-
quences shows the dominant escape path at work in the estimated model. Figure 6
plots the predicted paths for the four shock sequences over the sample. The right-hand
vertical axis measures the Ricardian wedge, overlayed in the panels as the dashed line.

Evidently, Ricardian wedges are positively correlated with the shocks gt, ut and
wt. Also, with the exception of the huge primary deficit in the mid 1970’s, the cross-
correlation between the wedge and zt appears positive. Look at the period during the
late 1970’s to very early 1980’s, a period estimated to be non-Ricardian. Here there is a
sustained period of higher than average demand, supply and fiscal shocks. Table 2 and
Figure 4 predict a persistent period of this shock pattern – the “most likely unlikely”
sequence of shocks – will trigger an escape to the Ricardian equilibrium. That is, in
fact, exactly what happens.

Again, the story that emerges is intuitive. Persistent positive shocks to demand,
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(a) Inflation. (b) Continuation value.

Figure 5: Decomposing components of the Ricardian wedge along escape paths to the
Ricardian equilibrium. Thick lines denote the dominant escape path.

mark-ups, and interest rates simultaneously with contractionary fiscal shocks generate
negative correlation between inflation and government debt. This effect is mediated
by expectations. An active monetary policy rule, though, predicts a weakening in
that correlation. The inertia in beliefs delays the onset of the resulting escape to a
Ricardian equilibrium after a sufficiently persistent sequence of shocks. As the effects
of the unusual sequence of shocks fade, the non-Ricardian regime re-emerges.

4.3 Out-of-sample predictions

In this section, we delve into an out-of-sample exercise that offers valuable insights
into our model’s performance. We base our estimates on the 1960-2007 period, inten-
tionally excluding the zero lower bound period from 2007.4 to 2015. Incorporating the
zero lower bound would introduce unnecessary complexity to our already computa-
tionally challenging model and extend beyond the scope of this study. While we could
employ a shadow fed funds rate to circumvent the zero lower bound, we find it more
prudent to focus on out-of-sample predictions as an effective means of evaluating our
model.

The out-of-sample exercise is conducted as follows: we first establish the structural
parameters by fixing them at their median posterior value, using estimates derived from
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Figure 6: Estimated shocks and escape paths to Ricardian beliefs. Solid line are shocks,
dashed line is the non-Ricardian wedge.
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Figure 7: Out-of-sample model predictions 2016-2022. Dotted lines are U.S. data.
Dashed lines are model-predicted values. Solid lines measure the non-Ricardian effect
by differencing model-predicted values from a counterfactual with Ricardian beliefs.
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the 1960-2015 sample. Next, we utilize the particle filter to generate one-period-ahead
out-of-sample forecasts for inflation, the output gap, and the Ricardian wedge.

Figure 7 showcases the results of our out-of-sample exercise. The top two panels
depict out-of-sample predictions for inflation and the output gap, offering a clear rep-
resentation of our model’s accuracy. Meanwhile, the bottom panel provides a glimpse
into the predicted Ricardian wedge. Overall, our model demonstrates a strong align-
ment with the qualitative features of inflation and the output gap throughout this
period. It is worth noting, however, that the model overestimates inflation between
2018 and 2020 and persistently overstates the output gap.

The bottom panel reveals an interesting aspect of our model’s predictions: the pe-
riod between 2017 and 2020 adheres to Ricardian beliefs. A sharp increase in the Ri-
cardian wedge emerges in 2021, signifying a strong shift towards non-Ricardian beliefs.
Thus, our analysis of the inflation and output gap plots indicates that the deflation
experienced during the onset of the COVID pandemic was not driven by non-Ricardian
beliefs.

Nevertheless, our out-of-sample forecasts identify a compelling development: start-
ing in 2021, the significant increase in inflation over the 2021-2022 period appears to
be largely attributable to endogenously non-Ricardian beliefs. The timing of this surge
in non-Ricardian beliefs corresponds with the implementation of the American Rescue
Plan’s fiscal policies. This observation underscores the influential role non-Ricardian
beliefs play in shaping macroeconomic outcomes and highlights the critical need to
comprehend their interactions with fiscal and monetary policies.

4.4 Counterfactuals

4.4.1 Extent of non-Ricardian beliefs
We can also gain more significant insights into the estimated mechanism by ex-

amining impulse responses to a contractionary fiscal policy shock. The impulse re-
sponse function is non-linear, depending on the fraction of agents forecasting with the
non-Ricardian model n and the recursively updated model coefficients and sequence of
shocks. To present these impulse responses, we proceed by fixing n at the values within
its estimated range for the median (n ∈ [0, 0.60]) and fixing the resulting coefficients
at their RPE values. Figure 8 plots the results. Each (color-coded) line represents a
different value for n, with the blue line representing n = 0, or the self-confirming fully
Ricardian equilibrium.
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Figure 8: Impulse responses to a 1-unit contractionary fiscal shock. Each impulse response
is computed for a different fraction of Ricardian beliefs, n, holding beliefs fixed at their RPE
values.

Evidently, from the top two panels, (a) and (b), the effect of an unanticipated con-
tractionary fiscal shock depends on the degree of non-Ricardian beliefs at the time.
When n = 0, the fiscal shocks have no impact on the output gap or inflation. Simi-
larly, when more than half of the agents have non-Ricardian beliefs (n ≥ 0.5), there is
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a more substantial economic reaction to the fiscal shock, with inflation and the output
gap dropping. One can understand how expectations impact this finding by looking
at the bottom two rows of Figure 8. The middle rows, (c) and (d), plot the infla-
tion expectations by agents with the non-Ricardian and Ricardian forecast models,
respectively. The bottom row plots these exact cross-type expectations for the contin-
uation value of financial and non-financial wealth vt. When the model is in a Ricardian
equilibrium (n = 0), there is no impact on either agent type’s expectations of future
inflation. As seen in panel (b), these beliefs are self-confirming. However, the bottom
panels show that the fiscal shock impacts expectations about future wealth as the real
primary surplus changes expectations about future after-tax income. For agents with
fully Ricardian beliefs (panel (f)), the unanticipated increase in the primary surplus
leads them to expect higher future disposable income. However, in economies that are
non-Ricardian, the presence of the non-Ricardian agents leads to non-Ricardian effects
through the lower output gap, which mediates those expectations for the agents in
panel (f). For the non-Ricardian expectations type, the positive surplus shock leads
them always to expect lower continuation wealth in the near term. For all agents, as
the economy recovers and the agents understand that the increase in surplus leads to
an increase in disposable income, their expected continuation values v increase before
returning to steady-state.

These impulse responses partially explain how the model generated higher inflation
during the 1970s and anchored expectations during the 1990s. During the 1970s, the
primary surplus shifted towards a sustained period of deficits. An increasing fraction
of agents forecasting based on those surpluses helped generate inflation. During the
1980s, there were more significant primary deficits, but the switch toward Ricardian
beliefs, and the inertia in the forecasting rules, mitigated those effects from impacting
inflation. Conversely, during the early 1990s, fiscal policy turned toward sustained
primary surpluses, and a fraction forecasting with the surplus model helped to reduce
and anchor inflation expectations.18

4.4.2 Policy change
The results thus far assume policy rules with time and state-invariant coefficients.

However, a line of research argues that the stance of monetary and fiscal policy evolves
over time. Davig and Leeper (2006), Bianchi (2013), and Bianchi and Ilut (2017)
identify regime-switching policy rules that alternate between active/passive and pas-

18Appendix 6 presents further evidence, external to the model, from the Survey of Professional
Forecasters, that forecasts are consistent with a non-Ricardian regime in the 1990’s.
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(f) ω = 6.31.

Figure 9: Rolling window estimation results. Panels (a)-(d) coefficient estimates. Panels
(e)-(f) corresponding T-maps with ω = 100 and ω = 6.03, resp.

sive/active monetary/fiscal policies. Estimating regime-switching policy and beliefs is
beyond this paper’s scope, but we present rolling-window estimates of time-varying
non-Ricardian beliefs alongside time-varying monetary and fiscal policies.

To make the analysis computationally feasible, we shut down endogenous selection
of beliefs and estimate the fraction n as a structural parameter.19 We consider rolling

19We can analytically evaluate the likelihood function with the Kalman Filter by shutting down the
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20-year windows and use Bayesian techniques to estimate structural parameters, in-
cluding n, over each rolling sample, advancing the window by eight quarters. This
provides a rough estimate of policy and belief evolution.

Figure 9 shows the rolling window estimates for monetary policy rule reaction
coefficients, which are consistent with previous findings. The period ending in 1981
featured a less active monetary policy, while subsequent windows were near two but
declined during the late 1990s. The reaction coefficient to the output gap is estimated to
be below 0.10 for most windows. Panel (d) plots the fiscal policy reaction coefficient φb,
which increases through the mid-1980s before declining in later windows, corresponding
to a relatively more active fiscal policy.

To better understand estimated beliefs in panel (c), we examine how changes in
monetary policy rule (φπ) or fiscal policy rule (φb) impact endogenous model selection
in panels (e) and (f). Changes in the monetary policy rule have a modest impact on
the equilibrium fraction of non-Ricardian beliefs in the estimated model version. More
active monetary policy rules shrink the basin of attraction for non-Ricardian equilibria.
Similar comparative statics arise for φy, but the effect from φb is non-monotonic.

Returning to panel (c) of Figure 9, the average degree of non-Ricardian beliefs is
significantly higher than in the benchmark estimation. Over the windows estimated
with declining φπ and φb, there is a downward trend in n. During the 1970s, policy
coefficients moved ambiguously regarding their theoretical impact on n. Estimates are
consistent with less active monetary policy at the beginning of the Great Inflation
period, followed by an increasing role of non-Ricardian beliefs in maintaining high
inflation.

In conclusion, we examine the policy implications of non-Ricardian beliefs and their
association with economic instability. The answer depends on the policy stance leading
to more non-Ricardian beliefs and its impact on the endogenous response of inflation
and the output gap. Our analysis reveals that non-Ricardian beliefs are not inherently
destabilizing, and policy coordination is possible even within an active/passive policy
regime.
4.4.3 Learning speed

We use two other counterfactuals to disentangle the role played by real-time learn-
ing. The first counterfactual, plotted in Panels 10a and 10b, fixes the shocks and the
parameters at their mean values except setting γ1 = 0.03. This counterfactual undoes

real-time predictor selection and focusing on the RPE in each window.

38



���� ���� ���� ���� ����

-��

-��

-�

�

�

��

(a) fast learning (γ1 = 0.03): output gap.
���� ���� ���� ���� ����

-��

-��

-��

-�

�

�

��

(b) fast learning (γ1 = 0.03): inflation.

���� ���� ���� ���� ����

����

���	

����

���	

����

���	

��
�

��
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(d) no-learning: inflation.

Figure 10: Counterfactuals. Panels (a)-(b) from counterfactual with higher learning gain
γ1 = 0.03. Panels (c) and (d) from counterfactual with no learning. Solid lines are the
counterfactual paths, dashed lines are the estimated paths.

the estimated fast-slow learning dynamic and considers the implications for the output
gap and inflation if learning is fast. The right panel shows that inflation volatility is
counterfactually high. Inflation is predicted in this alternate economy to be greater
during the 1960s, with vast over-shooting during the 1970s: the counterfactual impli-
cation is a dramatic collapse from the 1970s inflation. The counterfactual scenario also
predicts that faster learning would have led to a second high inflation episode during
the late 1990s.

Panels 10c and 10d construct a counterfactual scenario that shuts down learning
entirely. Parameters and shocks are held fixed at their estimated mean values, allowing
n to evolve endogenously, but for each value of nt, the model coefficients equal their
RPE values. The left panel plots the counterfactual fraction with non-Ricardian beliefs,
while the right panel is the corresponding inflation path. Clearly, in this scenario,
beliefs tend to be more Ricardian but with more volatility in the later sample periods.
The counterfactual scenario substantially under-predicts inflation during the 1970s and
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early 1980s and over-predicts during the 1990s. The model with no learning does well
to explain inflation during the late 1980s and 2000s.

5 Related literature
This paper is related to a large literature that examines monetary policy design

when replacing rational expectations with an adaptive learning rule. Key contribu-
tions include Bullard and Mitra (2002), Evans and Honkapohja (2003), and Preston
(2005). The first to characterize fiscal and monetary policy interaction under adaptive
learning is Evans and Honkapohja (2007) and Eusepi and Preston (2012). Evans et al.
(2012) examine the conditions under which Ricardian equivalence holds or fails under
adaptive learning. The theory of restricted perceptions is related to a wide variety
of applications of misspecified models, e.g., Sargent (1999), Adam (2005), Branch and
Evans (2006), Sargent (2008), Branch and McGough (2018), and Cho and Kasa (2015).
Misperceptions and learning about policy rules are introduced by Cogley et al. (2015)
and Hollmayr and Matthes (2015). This paper builds on insight from Woodford (2013),
where an example of a restricted perceptions equilibrium leads to a failure of Ricar-
dian equivalence. In short, our paper extends the theory of forecast misspecification in
Branch and Evans (2006) into the Eusepi and Preston (2018) environment with fiscal
and monetary policy interaction and generalizing the beliefs in Woodford (2013).

Our paper is also related to a long-standing tradition of constructing equilibria
with the property that inflation is (partly) driven by fiscal policy. In the original
contribution by Leeper (1991), an active fiscal policy, combined with a monetary policy
not committed to price stability, generates inflation driven by fiscal variables, i.e., the
“fiscal theory of the price-level.” See also, Sims (1994), Cochrane (2001) and Woodford
(2001). Recent research explains post-war U.S. inflation via recurrent change between
non-Ricardian and Ricardian policy regimes. Examples include Davig and Leeper
(2006), Sims (2011), and Bianchi and Ilut (2017). These papers also derive their
results from an important role given to non-Ricardian beliefs. When agents assign a
positive probability to changes from the Ricardian policy regime to the non-Ricardian
policy regime, then the beliefs imply failure of Ricardian equivalence, and inflation is
also a fiscal phenomenon. Non-Ricardian beliefs, though, in these settings require that
agents anticipate recurrent changes in the coordination and objectives of fiscal and
monetary policymakers. Indeed, there is not an empirical consensus for economically
meaningful time-variation in policy rules (c.f. Sims and Zha, 2006; Primiceri, 2005; Liu
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et al., 2011). The question addressed by our paper is whether fiscal shocks can matter
at times, even without policy regime change. Including the possibility of regime change
is an interesting topic to be explored. We note, however, that our results do not suggest
that policy regime change is an unimportant part of the inflation story. More subtle
changes within the Ricardian policy regime can generate belief-driven regime change.
We explored this point by taking rolling window estimates of the policy coefficients and
non-Ricardian beliefs. We found that the estimated fraction of non-Ricardian beliefs
evolves along with policy rules as predicted by theory. While beyond the scope of
the present study, we leave open quantifying policy-regime change versus belief-regime
change.

Finally, our theory here is inspired by and builds on Eusepi and Preston (2018),
who show that replacing rational expectations with an adaptive learning rule produces
temporary equilibrium dynamics that feature departures from Ricardian equivalence.
In addition, their paper illustrates how the maturity structure of government debt has
important implications for inflation in a non-Ricardian belief economy. They also esti-
mate a quantitative version of their model and conduct counterfactual analyses demon-
strating that perceived net wealth may be a significant factor in high-debt economies.

6 Conclusion
In this paper, we have studied the role of non-Ricardian beliefs in shaping macroe-

conomic outcomes, particularly inflation and output gap dynamics. We developed a
model incorporating agents with Ricardian and non-Ricardian beliefs and provided
a novel learning mechanism for agents to choose between these beliefs endogenously.
Our approach sheds light on the interaction between agents’ expectations, fiscal policy,
and monetary policy, offering insights into the evolution of inflation and output gap
dynamics over time.

Our main findings show that non-Ricardian beliefs played a significant role in gen-
erating higher inflation during the 1970s and anchoring expectations during the 1990s.
We demonstrated that the presence of non-Ricardian beliefs can lead to more substan-
tial economic reactions to fiscal shocks. Moreover, we found that the specific reaction
coefficients in monetary and fiscal policies can vary over time and have an impact on
the extent of non-Ricardian beliefs in the economy.

In addition, we investigated the policy implications of non-Ricardian beliefs and
their association with economic instability. Our results revealed that non-Ricardian
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beliefs are not inherently destabilizing, and the impact of these beliefs on economic sta-
bility depends on the policy stance leading to their prevalence. This finding highlights
the importance of policy coordination, even within an active/passive policy regime. A
more active monetary policy stance increases the likelihood of a Ricardian regime.

This paper contributes to the literature by offering a richer understanding of the
relationship between agents’ expectations, fiscal policy, and monetary policy in shaping
macroeconomic outcomes. Future research could extend the analysis by incorporating
additional factors, such as incorporating heterogeneous agents with different types of
non-Ricardian beliefs. For instance, Branch et al. (2022) show that restricted per-
ceptions equilibria are often accompanied by similar equilibria that include a volatile
sentiments, or sunspot, component. Another potential direction for future research
is to explore the implications of our findings for optimal policy design, considering
the interactions between monetary and fiscal policies and agents’ endogenous belief
formation.
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A Appendix

A.1 Computation of the restricted perceptions equilibrium

For a given distribution of PLMs, n, for all versions of the model the RPE can be
computed in a similar way. First, we can re-organize the ALM to obtain

yt = δ0bt+1 + δ1bt + δ2st + δ3ut (A.1.1)

bt+1 = ξ1bt + ξ2st + ξ3ut. (A.1.2)

Moreover, we can aggregate (6.3) and combine it with (5), (6.5), (A.1.1) and (A.1.2)
to obtain

vt =µv,1bt + µv,2st + µv,3ut, (A.1.3)

and (6.5), (4), (A.1.1) and (A.1.2) imply that

p∗t =µp,1bt + µp,2st + µp,3ut. (A.1.4)

We combine (A.1.3) and (A.1.4) to

zt = µbbt + µsst + µuut, (A.1.5)

where zt ≡ (vt, p
∗
t )

′, µb ≡ (µv,1, µp,1)
′, µs ≡ (µv,2, µp,2)

′, and µu ≡ (µv,3, µp,3)
′.

Next, recall that PLMs are given by

zt = ψsst−1 + ηt (A.1.6)

zt = ψbbt−1 + ηt, (A.1.7)

where ψs ≡ (ψs
v, ψ

s
p)

′, ψb ≡ (ψb
v, ψ

b
p)

′ and ηt ≡ (ηv,t, ηp,t)
′. This implies four orthogonal-

ity conditions that can be written as

0
!
= E[st−1ηt] = E[stηt+1] (A.1.8)

0
!
= E[bt−1ηt] = E[btηt+1]. (A.1.9)
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Now, plug the PLM (A.1.6) and ALM (A.1.5) into (A.1.8), i.e.,

0
!
= E[stηt+1] = E[st(zt+1 − ψsst)]

⇔ ψsE[s2t ] = E[stzt+1].

Equation by equation, we obtain

⇔ ψs
vE[s

2
t ] = E [st (µv,1bt+1 + µv,2st+1 + µv,3ut+1)]

ψs
vE[s

2
t ] = µv,1E [stbt+1] + µv,2E [stst+1] + µv,3E [stut+1]

⇔ ψs
v = µv,1

E[stbt+1]

E[s2t ]
+ µv,2

E[stst+1]

E[s2t ]
+ µv,3

E[stut+1]

E[s2t ]
and (A.1.10)

⇔ ψs
pE[s

2
t ] = E [st (µp,1bt+1 + µp,2st+1 + µp,3ut+1)]

ψs
pE[s

2
t ] = µp,1E [stbt+1] + µp,2E [stst+1] + µp,3E [stut+1]

⇔ ψs
p = µp,1

E[stbt+1]

E[s2t ]
+ µp,2

E[stst+1]

E[s2t ]
+ µp,3

E[stut+1]

E[s2t ]
. (A.1.11)

Likewise plug the PLM (A.1.7) and ALM (A.1.5) into (A.1.9), i.e.,

0
!
= E[btηt+1] = E[bt(zt+1 − ψbbt)]

⇔ ψbE[b2t ] = E[btzt+1].

Again, equation by equation, we obtain

⇔ ψb
vE[b

2
t ] = E [bt (µv,1bt+1 + µv,2st+1 + µv,3ut+1)]

ψb
vE[b

2
t ] = µv,1E [btbt+1] + µv,2E [btst+1] + µv,3E [btut+1]

⇔ ψb
v = µv,1

E[btbt+1]

E[b2t ]
+ µv,2

E[btst+1]

E[b2t ]
+ µv,3

E[btut+1]

E[b2t ]
and (A.1.12)

⇔ ψb
pE[b

2
t ] = E [bt (µp,1bt+1 + µp,2st+1 + µp,3ut+1)]

ψb
pE[b

2
t ] = µp,1E [btbt+1] + µp,2E [btst+1] + µp,3E [btut+1]

⇔ ψb
p = µp,1

E[btbt+1]

E[b2t ]
+ µp,2

E[btst+1]

E[b2t ]
+ µp,3

E[btut+1]

E[b2t ]
. (A.1.13)

The next step is to compute the moments. For this purpose, it is convenient to
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combine (A.1.2) and (6) in a VAR(1), i.e.,[
1 −ξ2
0 1

][
bt+1

st

]
=

[
ξ1 0

φb 0

][
bt

st−1

]
+

[
ξ3 0

0 1

][
ut

zt

]
⇔ Yt = AYt−1 +Cεt, (A.1.14)

where Yt ≡ (bt+1, st)
′ and εt ≡ (ut, zt)

′.
Define the variance-covariance matrix Ω ≡ E[YtY ′

t] and likewise Σ ≡ E[εtε
′
t]. Then

we can compute

Ω = E[(AYt−1 +Cεt)(AYt−1 +Cεt)
′] = AE[Yt−1Y ′

t−1]A
′ +CE[εtε

′
t]C

′

Ω = AΩA′ +CΣC′

⇔ vec(Ω) = [I−A⊗A]−1 (C⊗C) vec(Σ)

Moreover, the auto-covariance matrix is defined as E[YtY ′
t−1], thus

E[YtY ′
t−1] = E[(AYt−1Y ′

t−1 +CεtY ′
t−1)] = AE[Yt−1Y ′

t−1] = AΩ.

Notice that

Ω =

[
E[b2t+1] E[bt+1st]

E[stbt+1] E[s2t ]

]
, AΩ =

[
E[bt+1bt] E[bt+1st−1]

E[stbt] E[stst−1]

]
.

Recall definitions Γs
b ≡ E[bt+1st]/E[s

2
t ] and Γb

b ≡ E[bt+1bt]/E[b
2
t ] as well as E[bt+1st] =

E[stbt+1], E[bt+1bt] = E[btbt+1], E[st+1st] = E[stst+1], and that E[stut+1] = E[btut+1] =

0. Moreover, recall that (6) implies that E[stst+1] = φbE[stbt+1] and that E[btst+1] =

φbE[btbt+1]. Thus, we can rewrite (A.1.10), (A.1.11), (A.1.12) and (A.1.13) as

ψs
v(n) =µv,1Γ

s
b + µv,2φbΓ

s
b

ψs
p(n) =µp,1Γ

s
b + µp,2φbΓ

s
b

ψb
v(n) =µv,1Γ

b
b + µv,2φbΓ

b
b

ψb
p(n) =µp,1Γ

b
b + µp,2φbΓ

b
b.

These conditions can be solved for ψs
v(n), ψs

p(n), ψb
v(n), and ψb

p(n). In case for
sb > 0, this can only be achieved numerically as matrices A and C in (A.1.14) also
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depend on these coefficients.

A.2 Computation of the misspecification equilibrium

Recall the objective (10). Moreover, we have

Es[zst ] = ψs(n)st, and (A.2.1)

Eb[zbt ] = ψb(n)bt. (A.2.2)

Thus, we can use (A.1.5) and (A.2.1) to compute

(zt − Es[zst ]) = µbbt + µsst + µuut − ψs(n)st.

Under the assumption E[btut] = E[stut] = 0, it follows that

E[(zt − Es[zst ])
′(zt − Es[zst ])] = E[[b′tµ

′
b + s′tµ

′
s + u′tµ

′
u − s′tψ

s(n)′] [µbbt + µsst + µuut − ψs(n)st]]

E[(zt − Es[zst ])
′(zt − Es[zst ])] = (µ′

bµb)E[b
2
t ]

+ [µ′
sµs + ψs(n)′ψs(n)− µ′

sψ
s(n)− ψs(n)′µs]E[s

2
t ]

+ (µ′
uµu)E[u

2
t ] + [µ′

bµs − µ′
bψ

s(n) + µ′
sµb − ψs(n)′µb]E[btst].

In consequence, we obtain

EU s =−
[
(µ′

bµb)E[b
2
t ] + [µ′

sµs + ψs(n)′ψs(n)− µ′
sψ

s(n)− ψs(n)′µs]E[s
2
t ]

+(µ′
uµu)E[u

2
t ] + [µ′

bµs − µ′
bψ

s(n) + µ′
sµb − ψs(n)′µb]E[btst]

]
.

Likewise, we can use (A.1.5) and (A.2.2) to compute

(zt − Eb[zbt ]) = µbbt + µsst + µuut − ψb(n)bt.

Therefore it follows that

E[(zt − Eb[zbt ])
′(zt − Eb[zbt ])] = E[

[
b′tµ

′
b + s′tµ

′
s + u′tµ

′
u − b′tψ

b(n)′
] [
µbbt + µsst + µuut − ψb(n)bt

]
].
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Again we use the assumption E[btut] = E[stut] = 0 to obtain

E[(zt − Eb[zbt ])
′(zt − Eb[zbt ])] = [µ′

bµb + ψb(n)′ψb(n)− µ′
bψ

b(n)− ψb(n)′µb]E[b
2
t ] + (µ′

sµs)E[s
2
t ]

+ (µ′
uµu)E[u

2
t ] + [µ′

bµs + µ
′
sµb − µ′

sψ
b(n)− ψb(n)′µs]E[btst].

In consequence

EU b = −
[
[µ′

bµb + ψb(n)′ψb(n)− µ′
bψ

b(n)− ψb(n)′µb]E[b
2
t ] + (µ′

sµs)E[s
2
t ]

+(µ′
uµu)E[u

2
t ] + [µ′

bµs + µ
′
sµb − µ′

sψ
b(n)− ψb(n)′µs]E[btst]

]
.

Finally, one can define F (n) : [0, 1] → R as F (n) ≡ EU s − EU b, thus

F (n) =
[
ψb(n)′ψb(n)− µ′

bψ
b(n)− ψb(n)′µb

]
E[b2t ]

+ [µ′
sψ

s(n) + ψs(n)′µs − ψs(n)′ψs(n)]E[s2t ]

+
[
ψs(n)′µb + µ

′
bψ

s(n)− ψb(n)′µs − µ′
sψ

b(n)
]
E[btst].

B Proofs

B.1 Proof of Proposition B.1.1 (Existence)

Proposition B.1.1 Let N∗ (ω) = {n∗ | n∗ = Tω(n∗)} denote the set of misspecification
equilibria. As ω → ∞, N∗ has one of the following properties:

1. If F (0) < 0 and F (1) < 0 then n∗ = 0 ∈ N∗.
2. If F (0) > 0 and F (1) > 0 then n∗ = 1 ∈ N∗.
3. If F (0) < 0 and F (1) > 0 then {0, n̂, 1} ⊂ N∗ , where n̂ ∈ (0, 1) is such that

F (n̂) = 0.
4. If F (0) > 0 and F (1) < 0 then n∗ = n̂ ∈ N∗, where n̂ ∈ (0, 1) is such that

F (n̂) = 0.

Remark B.1.1 Proposition B.1.1 relies only on the continuity of F (n) and Tω(n).
If F (n) is monotonic then a stronger statement is possible: Proposition B.1.1 then
identifies the full set of misspecification equilibria. In most parameterizations, F (n) is
monotonic. When F (n) is non-monotonic it is theoretically possible for there to exist
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multiple interior equilibria, though, in all of the numerical cases examined we found at
most 3 misspecification equilibria.

The proof to Proposition B.1.1 is straightforward, but relies on the existence of a
unique restricted perceptions equilibrium for an open set of n. The following Lemma
provides the necessary and sufficient conditions for a unique RPE to exist.

Before stating the proposition, note first that the temporary equilibrium equations
can be written in the form of an expectational difference equation:

Xt = A

[
bt

st

]
+BÊtXt+1 + Cε̂t

where X ′
t = (st, bt) and ε̂t is a vector of white noise shocks and A,B,C are conformable.

Further, denote EXtX
′
t = Ω, Γ1 = E

[
bt

st

][
bt−1

st−1

]′
, and ej is a (1 × 2) unit vector

with a 1 in the jth element.

Lemma 1 A unique restricted perceptions equilibrium exists for all n if and only if

4 ≡ det (I4 − P ′ ⊗B) 6= 0

where
P = Γ′

1

[
ne′1 (e1Ωe

′
1)

−1
e1 + (1− n)e′2 (e2Ωe

′
2)

−1
e2

]
Proof. In an RPE

Eej

[
bt−1

st−1

](
Xt − ψkej

[
bt−1

st−1

])′

= 0

After plugging in for aggregate expectations into the expectational difference equation

Xt = ξ

[
bt

st

]
+ Cε̂t

where
ξ = A+ nBψse1 + (1− n)Bψbe2
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Using this notation,

ψk′ =
(
ejΩe

′
j

)−1
Eej

[
bt−1

st−1

]
X ′

t

=
(
ejΩe

′
j

)−1
ejΓ1ξ

′

After plugging in for ψs, ψb into ξ:

ξ = A+BξΓ′
1

[
ne′1 (e1Ωe

′
1)

−1
e1 + (1− n)e′2 (e2Ωe

′
2)

−1
e2

]
⇔ ξ = A+BξP

It follows that
vec(ξ) = vec(A) + (P ′ ⊗B) vec(ξ)

Finally, the RPE coefficient is given by

vec(ξ) = (I4 − (P ′ ⊗B))
−1

vec(A)

and the stated conditions provides necessary and sufficient conditions for a unique ξ.

Proof of Proposition B.1.1.
The existence of a set of fixed points n∗ = Tω(n∗) follow directly from applying

Brouwer’s theorem, since Tω : [0, 1] → [0, 1] and F (n) is continuous provided there
exists an RPE. Lemma 1 provides the requisite necessary and sufficient conditions. To
complete the proof, we simply require establishing the existence of a unique RPE for
an open set of n. This is straightforward as for n = 0 or n = 1 implies that 4 = 0 and
ξ is continuous in n.

C Bayesian estimation details
Recall the nonlinear state-space model:

Xt = g (Xt−1,Θ) +Q(Xt−1,Θ)νt

Wt = f(Xt, υt),
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where the state vector is

X ′
t =

(
bt+1, πt, yt, vt, st, gt, ut, wt, zt, nt,MSEst,MSEbt, vec (ψ

s
t ) , vec

(
ψb
t

))
,

vec (·) is the vectorization operator, the observation variables are

W′
t = (yt, πt, st, bt+1, it) ,

and the parameter vector is

Θ′ = (κ, α, φπ, φy, φb, ρg, ρu, ρw, ρz, σg, σu, σw, σz, ω, γ1, γ2) .

The measurement and state disturbances are υt, νt respectively. The 4 exogenous shocks
follow a linear transition equation with a diagonal matrix whose diagonals are the
respective AR(1) coefficients.

In brief, the particle filter, like the Kalman filter, operates in both a prediction and
update steps. The first step, given the previous period’s particle approximation, is to
draw a large number of innovations and then iterate on the state transition equation to
yield a predicted next-period state. The predicted particles are then re-weighted based
on the most recent data observation, this is the updating step. The updated weights
are used to directly compute the likelihood value.

The Bootstrap particle filter, while conceptually straightforward, introduces several
computational challenges. First, a stable approximation of the likelihood function re-
quires a large number of particles. Even with efficient parallelization and vectorization
each computation of the likelihood approximation is time-consuming. In our applica-
tion, this is especially true since the state-vector consists of 34 variables. Adopting
stochastic gradient learning versus constant gain learning lowers the computational
cost considerably. With constant gain least-squares, the particle filter algorithm would
require inverting the regressor covariance matrix 1012 times. Second, measurement
noise in the observation equation is necessary for an accurate particle filter approxi-
mation of the likelihood function. The consequence is that the parameter estimates
are estimated with greater uncertainty. We follow Herbst and Schorfheide (2015) in
defining measurement error so that Συ = 0.25× diag [V ar (WT )].

To approximate the likelihood function we use the Bootstrap Particle Filter, as
developed in Herbst and Schorfheide (2015):
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Algorithm 1 Bootstrap Particle Filter.

1. Initialization Draw the initial particles νj0
iid∼ p(X0) and let W j

0 , j = 1, ...,M .

2. Recursion For t = 1, ..., T :

(a) Forecasting Xt. Iterate on the state-transition equation:

X̂j
t = g(Xj

t−1,Θ) +Q(Xj
t−1,Θ)νjt , ν

j
t ∼ Fν(·,Θ)

(b) Forecasting Wt. Define the weights

ŵj
t = p(Wt|X̂j

t ,Θ)

where

p(·|·) ≈ 1

M

M∑
j=1

ŵj
tW

j
t−1

and

ŵj
t = (2π)−n/2 |Συ|−1/2 × exp

{
−1

2

[
Wt − f(X̂j

t )
]′
Σ−1

υ

[
Wt − f(X̂j

t )
]}

where Συ is the covariance matrix for the measurement errors.

(c) Updating. Normalize weights:

Ŵ j
t =

ŵj
tW

j
t−1

1
M

∑M
j=1 ŵ

j
tW

j
t−1

(d) Selection. Define m̂ = M/
(
M−1

∑M
j=1(Ŵ

j
t )

2
)

and let rt be an indicator
variable whenever m̂t < M/2.

Case 1: rt = 1 Let Xj
t , j = 1, ...,M denote M iid draws from a multinomial distribu-

tion with support points/weights
{
X̂j

t , Ŵ
j
t

}
and set W j

t = 1,∀M .

Case 2: rt = 0 Then set Xj
t = X̂j

t and W j
t = Ŵ j

t .

3. Likelihood approximation:

ln p̂
(
WT |Θ

)
=

T∑
t=1

ln

(
M−1

M∑
j=1

ŵj
tW

j
t−1

)

54



Finally, we use a Metropolis-Hastings algorithm to construct the posterior distri-
bution:

p (Θ|WT ) ∝ p (WT |Θ)× p (Θ)

where p(Θ) is the prior distribution and p (Θ|WT ) is the object of interest. Our al-
gorithm samples from the posterior distribution through an adapted Random-Walk
Metropolis Hastings (RWMH) MCMC technique, with the particle-filter based esti-
mate of the likelihood function. Convergence properties of the algorithm are discussed
in Herbst and Schorfheide (2015). One challenge for the RWMH is identifying a good
candidate distribution to draw from, and to be sure that the chain samples from the
entire support of the distribution. We do this in two ways. First, we use an adaptive
approach to recursively update the candidate distribution combined with a long tran-
sient burn-in period. Second, in 99% of the time we draw from a mixture distribution,
each proportional to the recursively updated candidate that is centered on the previ-
ously accepted draw from the RWMH. The remaining time the draws come naively
from the candidate distribution. This ensures that the algorithm is not concentrated
near a local maxima and that convergence occurs relatively quickly. We also used a
tempering procedure in the early stages of the burn-in period.

We can now describe the Metropolis-Hastings algorithm.

Algorithm 2 Metropolis-Hastings. For i = 1, ..., N

1. Draw a candidate θ from q (θ|Θi−1)

2. Set Θi = θ with probability

α
(
θ|Θi−1

)
= min

{
1,

p̂(WT |θ)p(θ)/q(θ|Θi−1)

p̂(WT |Θi−1)p(Θi−1)/q(Θi−1|θ)

}
where p̂(·|·) is computed using Algorithm 1, and p(·) is the prior.

For the candidate density we use a variant on a random-walk Metropolis Hastings.
With probability δ ≈ 1 we set

q(·|Θi−1) = N(Θi−1, cΣ̂i)
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where we use a recursive adaptive algorithm to compute Σ̂:

Θ̄i =
i+ 1

100 + i+ 1

[
i

1 + i
Θ̄i−1 +

1

1 + i
Θi−1

]
+

100

100 + i+ 1
Θ0

Σ̂i =
i

100 + i

[
i− 1

i
Σ̂i−1 +

(
iΘ̄i−1Θ̄

′
i−1 − (i+ 1)Θ̄iΘ̄

′
iΘ

i−1Θ(i−1)′
)
/i

]
+

100

100 + i
Σ̂0

and with complementary probability

q(·|Θi−1) = N(Θ̄i, cΣ̂i)

In the estimation, we set M = 120, 000 and N = 200, 000. We use a burn-in period
of 80, 000 draws. We ran a tuning run to initialize Σ̂ during which we also used a
tempering schedule. The priors are specified below.

Table A1: Prior distribution of parameters

Parameter Dist. Para(1) Para(2)

Structural parameters
κ Beta 0.1 0.2
α Beta 0.6 0.2

Policy parameters
φπ Normal 1.50 0.25
φy Normal 0.125 0.05
φb Inv. Gamma 0.15 0.05

Exogenous shocks
ρg Beta 0.50 0.20
ρu Beta 0.50 0.20
ρw Beta 0.50 0.20
ρz Beta 0.50 0.20

100σg Inv. Gamma 0.01 2.00
100σu Inv. Gamma 0.01 2.00
100σw Inv. Gamma 0.01 2.00
100σz Inv. Gamma 0.01 2.00

Learning parameters
ω Gamma 5.00 2.00
γ1 Beta 0.015 0.015
γ2 Beta 0.03 0.03
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Many of our priors are the same as in Eusepi and Preston (2018) and Herbst and
Schorfheide (2015). We set the prior for the intensity of choice in line with survey
estimates provided in Branch (2004). Our prior for the gain parameters are informed
by previous estimates provided in the literature. The observation equation also includes
measurement errros, as discussed in the main text. We set these, following Herbst and
Schorfheide (2015), as Συ = 0.25× diag

[
V ar

(
WT
)]

.
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Supplementary Appendix

Additional model details
This Appendix provides additional details on the model and its derivations. The

reader is referred to Woodford (2013) for more complete details. All parameters and
variables are explained in the paper above.

Households. Imposing Ricardian beliefs (3) onto the consumption rule (1) leads
to a consumption function that satisfies Ricardian equivalence:

cit =
∞∑
T=t

βT−tEi
t{(1− β)(YT − gT )− βσ(βiT − πT+1),

where gt = Gt + c̄t is a composite consumption shock.
On the other hand, with non-Ricardian beliefs the path of future surpluses has a

direct effect on consumption:

cit =
∞∑
T=t

βT−tEi
t{(1− β)(YT − gT )− βσ(βiT − πT+1)}

+ (1− β)bit +
∞∑
T=t

βT−tEi
t{(1− β)sb(βiT − πT )− sT}}.

Evidently, non-Ricardian beliefs lead households to perceive holdings of government
debt as real wealth and a change in the expected path for future surpluses can have
a real effect on consumption. In our theory, we posit two forecasting models that, in
equilibrium, will differ in whether beliefs are Ricardian or not.

Firms. A firm j that can optimally reset price p∗t (j) will do so to satisfy the
first-order condition

p∗t (j) =(1− αβ)
∞∑
T=t

(αβ)T−t
(
Ej

t p
opt
T − pt−1

)
,

where Ej
t p

opt
T is the perceived optimal price in period T . This condition can be written
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recursively:

p∗t (j) =(1− αβ)
(
Ej

t p
opt
t − pt−1

)
+ (αβ)Ej

t p
∗
t+1(j) + (αβ)πt, where (6.1)

Ej
t p

∗
t+1(j) ≡(1− αβ)

∞∑
T=t

(αβ)T−t
(
Ej

t p
opt
T+1 − pt

)
.

Temporary equilibrium with heterogeneous beliefs. Recall the consump-
tion function recursion:

cit = (1− β)bit + (1− β)(Yt − τt)− β[σ − (1− β)sb]it − (1− β)sbπt + βc̄t + βEi
tv

i
t+1

vit = (1− β)(Yt − τt)− [σ − (1− β)sb](βit − πt)− (1− β)c̄t + βEi
tv

i
t+1.

The latter two can be written as

cit = (1− β)bit + c̄t − σπt + vit,

which, together with bt ≡
∫
bitdi, vt ≡

∫
vitdi and (8) yields aggregate demand

Yt = c̄t +Gt + (1− β)bt + vt − σπt. (6.2)

To express the aggregate demand equation in explicit dependence of expectations,
we apply (7) and (6.2) to the vit recursion and obtain

vit = (1− β)vt + (1− β)β(bt+1 − bt)− βσ(it − πt) + βEi
tvt+1. (6.3)

Averaging over expectations in (6.3) and plugging into (6.2) yields (9). Thus, because
the continuation variable vit consists of aggregate variables that are beyond the house-
hold’s control, and the agents understand their optimal consumption plan and perceived
budget constraints, the aggregation result in the main text follows immediately. The
ease with which the heterogeneous beliefs aggregate follows from the infinite-horizon
learning consumption, which depends on household i′s subjective forecasts of aggregate
variables beyond their control. An example of where aggregation of heterogeneous be-
liefs is made more difficult by higher-order beliefs is provided by Branch and McGough
(2009).

Next, as in Woodford (2013, Section 2.3), in equilibrium the optimal price in this
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model can be expressed as

poptt = pt + ζ (Yt − Y n
t ) + µt, (6.4)

where ζ > 0 is a composite term of structural parameters measuring the output elas-
ticity of a firm’s optimal price.20 The exogenous random variable Y n

t is the natural
level of output that captures exogenous demand shocks and µt represents exogenous
disturbances to the desired markup over marginal cost.

As the firm’s price is a decision variable, it is natural to impose that Ej
t p

opt
t = poptt .

It follows, then, from plugging (6.4) and (4) into (6.1) that

p∗t (j) = (1− α)p∗t + (1− αβ) [ζyt + µt] + αβEj
t p

∗
t+1(j).

Again averaging across firms, defining the output gap as yt ≡ Yt − Y n
t , parameter

κ ≡ [(1 − α)(1 − αβ)ζ]/α, and the cost-push supply shock as ut ≡ {[(1 − α)(1 −
αβ)]/α}µt, yields the New Keynesian Phillips curve

πt = (1− α)β

∫
Ej

t p
∗
t+1(j)dj + κyt + ut. (6.5)

As for the households, after applying the law of iterated expectations a firm j sets

p∗t (j) = (1− α)p∗t + (1− αβ) [ζyt + µt] + αβEj
t p

∗
t+1

and, an aggregate New Keynesian Phillips Curve results after averaging across all firms:

πt = (1− α) βÊtp
∗
t+1 + κyt + ut.

Restricted perceptions vs. rational expectations
Since n = 0 is equivalent to the rational expectations model, our estimation results

present an econometric test of our model of restricted perceptions against rational ex-
pectations. The results tell us that the data prefer the specification of the model with
a non-Ricardian equilibrium over most of the sample. To better assess the plausibility
of these results, we present (informal) evidence from the Survey of Professional Fore-
casters (SPF). Although beyond the scope of this paper, a complete empirical analysis

20The term is defined in Woodford (2003, ch.3-4).
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would use the empirical framework in Branch (2004) to analyze the probability that
an individual-level survey forecast was made by a simple model with a restricted set
of fiscal variables. As a first pass of providing some external evidence, we compute the
statistical scores of the median SPF forecast across three different possible sets of fore-
casting model regressors: one that includes the primary surplus only, one that includes
the debt, and one that includes both. Specifically, we compute moving averages of the
statistical score Exj,t−1

(
πt − πe

t−1,t

)
where xj,t ∈ {st, bt}, πt is the PCE inflation rate,

and πe
t−1,t is the one-step ahead median SPF survey forecast. The results are plotted in

Figure A1. Notice that within a restricted perceptions equilibrium, the (time-)average
score should be zero. Thus, if the surplus model leads to a lower, and near zero, score
then this provides indirect evidence in favor of a restricted perceptions equilibrium
with non-Ricardian beliefs. The results in the scores-Figure shows that, beginning in
the late 1980’s, the median SPF is consistent with a greater share of forecasters using
the primary surplus as the fiscal variable. In fact, in the late 1990’s that score vector
is near zero, as predicted by a non-Ricardian restricted perceptions equilibrium.
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(a) Raw scores. (b) 4-Qtr. Moving-average.

(c) 8-Qtr. Moving-average. (d) 5-Yr. Moving-average.

Figure A1: Measured scores for different sets of predictors in the Survey of Professional
Forecasters. Each panel computes the scores with different moving average lengths. A score
close to zero is consistent with a restricted perceptions equilibrium.
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