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Appendix
Proof to Propositions1-2.

Propositions 1 and 2 provide asymptotic approximations to the learning algorithm

θt = θt−1 + γSt−1Xt−1
(
πt − θ′t−1Xt−1

)′
St = St−1 + γ (XtX

′
t − St−1)

and where πt = T (θt−1)
′Xt−1 + α−1rt. It is possible to re-write the equations for real-time

learning in the form

φγt = φγt−1 + γH(φγt−1, X̄t)

where X̄t = (1, πt, πt−1, rt)
′. Verifying many of the technical conditions required for con-

vergence of the learning algorithm is simplified by the fact that the state dynamics, in a

neighborhood of the equilibrium of interest, are conditionally linear and can be written as

X̄t ≡


Xt

Xt−1

rt

 =


A(φt−1) 0 0

I 0 0

0 0 0

 X̄t−1 +


B 0

0 0

0 1

Wt

where I, 0 are conformable matrices, and

Xt = A(φt−1)Xt−1 +BWt

Here Xt = (1, πt)
′ and Wt = (1, rt)

′ when dynamics are restricted to a neighborhood of the

fundamentals REE or Wt = (1, νt)
′ when restricted to a set near the deflationary trap. The
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superscript γ highlights the dependence of the parameter estimates on γ. The stochastic

approximation approach is to compare the solutions to the continuous time ODE and the

discrete time algorithm, and then study the convergence of the continuous time approxi-

mating ODE. Thus, define the corresponding continuous time sequence for φγt as φγt = φγt if

τ γt ≤ τ < τ γt+1 where τ γt = γt.

This Appendix sketches the proof to the propositions by making use of Propositions

7.8 and 7.9 of Evans and Honkapohja, and using arguments in Chapter 14 of Evans and

Honkapohja and Branch and Evans (2011). The “mean dynamics” are the solution to the

ODE
dφ

dτ
= h(φ)

where h(φ) = EH(φ, X̄t). Notice, in particular, that this is the mean dynamics ODE given

in the text:

dθ

dτ
= S−1M(φ) (T (θ)− θ)

dS

dτ
= M(φ)− S

where T (θ) = (α−1(α− 1)π̄ + α−1a(1 + b), α−1b2)
′
in a subset of the fundamentals REE and

T (θ) = (π̃, 0)′ near the deflationary equilibrium.

Let φ̃(τ, φ0) be the solution to the mean dynamics differential equation φ̇ = h(φ) from

an initial condition φ0. Define Uγ(τ) = γ−1/2
(
φγ(τ)− φ̃(τ, φ0)

)
. The two propositions in

the text are based on Uγ converging to a Gaussian variable, in a sense made precise below.

In particular, for small γ the probability distribution of Uγ(τ) converges to the probability

distribution of the solution U(t) to the differential equation

dU(τ) = Dφh(φ̃(τ, φ0))U(τ)dτ +R1/2(φ̃(τ, φ0))dW (τ)

The results below establish that EU(τ) = 0 so that, as γ → 0, Eφγ(τ) = φ̃(τ, φ0) and

limτ→∞ φ̃(τ, φ0) = φ∗. Thus, key properties of the learning dynamics arise from a study of

(i.) the asymptotic distribution for θt around the rational expectations equilibrium and (ii.)

the mean dynamic path φ̃(τ, φ0) where φ0 are drawn from the asymptotic distribution.

The validity of the propositions in the text depend on verifying a set of technical condi-

tions. The conditions required for Proposition 2 can be verified by using the arguments in

Branch and Evans (2011), and so they are omitted here.

Proposition 2 uses the following result from Evans and Honkapohja (2001):

Proposition 1 (EH(2001)) Consider the normalized random variables:

Uγ(τ) = γ−1/2
(
φγ(τ)− φ̃(τ, φ0)

)
.
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As γ → 0, the process Uγ(τ), 0 ≤ τ ≤ T , converges weakly to the solution U(τ) of the

stochastic differential equation

dU(τ) = Dφh(φ̃(τ, φ0))U(τ)dτ +R1/2(φ̃(τ, φ0))dW (τ)

with initial condition U(0) = 0, where W (τ) is a standard vector Wiener process, and R is

a covariance matrix whose i, jth elements are

Rij(φ) =
∞∑

k=−∞

Cov
[
Hi(φ, X̄φ

k ),Hj(φ, X̄φ
0 )
]

Moreover, the solution to the stochastic differential equation has the following properties

EU(τ) = 0

dV ar(U(τ))

dτ
= Dφh(φ̃(τ, φ0))Vu(τ) + VuDφh(φ̃(τ, φ0))

′ +R(φ̃(τ, φ0)),

where Vu = V ar(U(τ)). This result indicates that, for finite periods of time, the learning

dynamics weakly converge to the solution of the ODE θ̇ = h(θ), thus establishing Proposition

2.

Proposition 1 relies on the stochastic differential equation in the above result to have a

stationary distribution asymptotically. Establishing this result requires stronger conditions.

In particular,

A1 φ∗ is a globally asymptotically stable rest point of the ODE φ̇ = h(φ).

A2 Dφh(φ) is Lipschitz and all of the eigenvalues of Dφh(φ∗) have strictly negative real

parts.

A3 There exist q1, q2, q3 ≥ 0 such that, for all q > 0 and all compact sets Q, there is a

constant µ(q,Q) such that for all x ∈ Rd, a ∈ Q,

i. supnEx,a(1 + |X̄n|q) ≤ µ(1 + |x|q),

ii. supnEx,a(|H(φγn, X̄n+1)|2) ≤ µ(1 + |x|q1),

iii. supnEx,a(|νφγn(X̄n+1)|2) ≤ µ(1 + |x|q2), where νφ =
∑

k≥0(Π
k
φHφ − h(φ))(y), and

Πφ is the stationary transition probability associated to the stationary Markov

process X̄n,

iiii. supnEx,a(|φγn|2) ≤ µ(1 + |x|q3).
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As noted in the text, there are three rest points to the ODE φ̇ = h(φ), corresponding to

the two REE with b = 0, i.e. a = π̄ or a = π̃, and the other with b = α, a = π̄. The b = α REE

is unstable under learning, and for some values of φγt the dynamics are explosive. For initial

conditions sufficiently close to b = 0, and sufficiently small gain parameters γ, then the MSV

REE is a stable rest point to the learning dynamics. However, to apply the approximation

theorem below, the algorithm needs to rule out trajectories in the explosive region. Thus,

the learning algorithm is supplemented with a “projection facility” that projects the iterates

φγt into a confined set (see Evans and Honkapohja (2001) and Kushner and Yin (1997)). As

a result of these assumptions the RE solution (ā, b̄) = (π̄, 0) is a globally stable rest point of

the ODE that satisfies (A1)-(A2).

It remains to verify (A3). Write X̄n = Ā(φn−1)X̄n−1 + B̄Wt, where the expressions for

Ā, B̄ are given above. The eigenvalues of Ā are zero and A, and the projection facility along

with the conditional linearity ensures that X̄n remains in a compact subset of D, an open

set around the REE (π̄, 0) or the REE (π̃, 0), which in each case has a unique rest point to

φ̇ = h(φ). Thus (A3.i) is immediate. Verifying conditions (A.ii)-(A.iv) is tedious, but given a

projection facility that constrains φt to lie in a compact subset of D, it is straightforward to

extend the arguments in Evans and Honkapohja (2001) (pg.335-336) for the Cobweb model

to the present setting.

Proposition 1 arises from the following result in Evans and Honkapohja:

Proposition 2 (EH(2001)) Consider the normalized random variables Uγk(τ) = γ
−1/2
k (φγk(τ)− φ∗).

For any sequences τk →∞, γk → 0, the sequence of random variables (Uγk(τk))k≥0 converges

in distribution to a normal random variable with zero mean and covariance matrix

C =

∫ ∞
0

esBR(θ∗)esB
′
ds,

where B = Dφh(φ∗).

It follows then that θt ∼ N(θ∗, γC) for small γ and large t. Using arguments in Evans

and Honkapohja (2001), Chapter 14.4, C is the solution to the matrix Riccati equation

Dθh(φ∗)C + C (Dθh(φ∗))′ = −Rθ(φ
∗)

where R = EH(φ∗, X̄)H(φ∗, X̄)′. Straightforward calculations then lead to the expression

for V in the text.

4



Overview of the New Keynesian Model with Trend Inflation.

The reduced-form equations (13)-(14) were derived by Ascari and Ropele (2007) from

a standard New Keynesian framework and log-linearized around a non-zero steady-state

inflation rate. This Appendix provides a brief overview of the model in Ascari and Ropele

(2007).

There are a continuum of (identical) households whose flow utility is given by

U(C,N) =
C1−σ
t

1− σ
− χNt

Households maximize lifetime utility subject to the constraint,

PtCt +Bt ≤ PtwtNt + (1 + it−1)Bt−1 + Πt + Tt

where Pt is the price of the final good, Bt are risk-free one period bonds with nominal

net return it−1, Πt are profits returned to households and Tt are lump-sum transfers. This

formulation assumes the “cashless limit” that abstracts from money balances in the house-

hold’s problem. The household will select sequences of consumption, labor hours, and bond

holdings to satisfy the first-order conditions

C−σt = βÊt

(
C−σt+1(1 + it)

Pt
Pt+1

)
(1)

χCσ
t = wt (2)

When Ê = E, i.e. agents hold rational expectations, the conditions (1)-(2) have the usual

interpretation.

When Ê 6= E, the equation (1) can be justified in several ways. Our preference is to

posit (1) as a behavioral relation that dictates that boundedly rational households choose

their consumption to equate their expected marginal rate of substitution with the marginal

rate of transformation. This is called Euler-equation learning and is another benchmark

approach in the learning literature. See, for example Evans and Honkapohja (2013). In the

current setting, the Euler-equation learning interpretation of (1) is completed by imagining

a representative agent with a long history of data who observed a strong positive correlation

between their own consumption and aggregate consumption. Euler-equation learning is a

bounded-optimality approach closely related to the more general “shadow price” learning

approach of Evans and McGough (2014).1

1An alternative approach has been advanced by Preston (2006) in which boundedly rational agents solve

their perceived dynamic programming problem, assuming that their beliefs will not change over time. This

“anticipated utility” approach is typically implemented, e.g., by obtaining an IS equation that depends on
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The final good Yt is produced by perfectly competitive firms using intermediate goods

Yt(i) produced using a CES production function Yt =
(∫ 1

0
Yt(i)

(ζ−1)/ζdi
)ζ/(ζ−1)

, ζ > 1. The

final goods firms choose their inputs to maximize profits, taking prices as given, resulting

in the demand for input i Yt(i) = (Pt(i)/Pt)
−ζYt. Intermediate goods are produced by a

continuum of firms with technology Yt(i) = Nt(i).Intermediate goods producers take the

demand for their good as given when setting prices optimally. However, they also face the

Calvo risk where with probability α the firm’s price will remain unchanged each period. This

leads to an expression for price setting that is identical to that of Woodford, except that the

optimal re-set price also depends on the cumulative gross inflation rates over the period that

a price might remain fixed.

Ascari and Ropele (2007) show that the steady-state properties depend on the trend

inflation rate and, in particular, under most plausible parameterizations positive trend in-

flation leads to a lower steady-state output. Ascari and Ropele then demonstrate that a

log-linearization, around a steady-state with gross inflation Π, of the equilibrium conditions

lead to the following reduced-form equations:

x̂t = Etx̂t+1 − σ−1 (it − Etπ̂t+1 − r̂t)

π̂t = κx̂t + βΠEtπ̂t+1 + (Π− 1)β(1− αΠζ−1)Et

(
(ζ − 1)π̂t+1 + φ̂t+1

)
,

φ̂t = (1− αβΠζ−1)(1− σ)x̂t + αβΠζ−1Et

(
(ζ − 1)π̂t+1 + φ̂t+1

)
where x̂, π̂, ı̂ are log deviations from a steady-state with gross inflation factor Π. Iterating

forward on the φ equation leads to the equations in the text. Ascari and Ropele show that

κ = (Π− 1)(σ − 1)β(1− αΠζ−1) + σλ(Π), λ(Π) = (1− αΠζ−1)(1− αβΠζ)/αΠζ−1.

By setting Π = 1, i.e. linearizing around a zero inflation steady-state, these equations

reduce to the benchmark New Keynesian model

x̂t = Etx̂t+1 − σ−1 (̂ıt − Etπ̂t+1 − rt)

π̂t = βEtπ̂t+1 + κx̂t
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