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Abstract

The restricted perceptions approach is an expectational modeling paradigm for
dynamic macroeconomic models that generalizes the rational expectations hypothe-
sis. The approach follows a cognitive consistency principle: the way people forecast
should be on par with a good econometrician. They identify and estimate, using
available data, a parametric family of (linear) forecast models that are almost al-
ways misspecified. Nevertheless, despite the misspecification, they do not make
systematic forecast errors. In a restricted perceptions equilibrium (RPE), each
agent uses an optimal forecast model among the candidates under consideration.
Notably, like a rational expectations equilibrium, an RPE is a Nash equilibrium
concept: the optimal forecast model for an individual depends on the behaviors
and hence the models used by other agents. The restricted perceptions approach
brings realism and cognitive consistency into models of expectation formation while
preserving the cross-equation restrictions that are the hallmark of rational expec-
tations models—this article overviews recent research on restricted perceptions and
their applications.

JEL Classification: D82; D83; E40; E50
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1. Introduction

The rational expectations hypothesis aligns subjective expectations with actual outcomes,
a strong assumption for a theory of expectation formation. At the same time, people’s
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subjective beliefs could, by pure chance, equate to the actual probability distribution,
which depends on those beliefs. A theory of purposeful behavior would hold that agents
could calculate the correct conditional expectations. However, calculating rational beliefs
requires agents to correctly understand the complete economic structure, the exogenous
state variables, and the preferences and beliefs of all other individuals.

Instead, many models depart from rational expectations through bounded rationality
in beliefs or decision-making. Sargent (1993) warned researchers about the dangers of
the “wilderness of bounded rationality.” The appeal of rational expectations is that they
are model consistent. Once departing from model consistency, it is difficult to know
where to add modeling discipline. Evans and Honkapohja (2001) argue in favor of a
cognitive consistency principle: agents should be modeled like a good economist who
specifies, estimates, and revises models. The cognitive consistency principle says that the
model can still discipline beliefs by determining the state variables agents include in their
forecasting models. An estimation process, though, will lead to real-time learning that
may or may not converge to rational expectations.

Once adopting the cognitive consistency principle naturally leads us down a path where
boundedly rational forecasting models do not nest rational expectations as a particular
case. White (1994) begins his text on econometric inference by noting that all models
are misspecified. The restricted perceptions approach is a burgeoning field of bounded
rationality that studies the consequences of misspecified beliefs in macroeconomic models.
With restricted perceptions, agents restrict attention to a (linear) parametric family of
forecast models that are misspecified in some dimension, e.g., the number of lags, vari-
ables, and linearity, among others. However, it is possible to discipline beliefs by asking
the agents to do their best, given their misspecification. In a restricted perceptions equi-
librium, agents’ perceived model is the projection of the endogenous variable on their
restricted approximating model. Thus, restricted perceptions preserve the discipline of
cross equation restrictions, like rational expectations, while allowing for substantial de-
partures. This article overviews the restricted perceptions approach and its applications.

Section 2 introduces the model, while section 3 studies the rational expectations so-
lution and its E-stability properties. In section 4, there is an overview of the restricted
perceptions approach, and section 5 illustrates several economic applications. Section 6
surveys the literature and concludes with thoughts for future research.
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2. Model

The economic environments in this paper lead to a (temporary) equilibrium in the form
of a linear expectational model,

yt = α + βÊtyt+1 + γ′zt (1)

where α, β ∈ R, Êt is an expectations operator (details below), and zt is an (n× 1) vector
of stationary exogenous variables.1 Throughout, assume that

zt = ρzt−1 + εt

with eigenvalues of ρ inside the unit circle and εt ∼ N(0,Σε). The next subsection
describes a specific economic environment whose equilibrium conditions take the form of
(2).

When Êt = Et, agents are said to have rational expectations. In that case, equation
(2) is an expectational difference equation. A rational expectations equilibrium is a non-
explosive solution {yt} to (2).

This paper, however, describes a class of bounded rationality models where the ex-
pectation operator may not align with the conditional mathematical expectations. An
expectations operator is a mapping from the space of unobservable random variables into
the space of functions of observables. In this case, the unobservable variables are those
that are to be forecasted. Rational expectations close the loop by having the expectations
operator be the orthogonal projection onto the space of (measurable) functions generated
by the observables, i.e. the conditional expectations operator.2

The basic idea behind misspecification in expectations is that the actual data-generating
process is unknown and may never be known to agents. The following section catalogs a
variety of ways in which misspecification may emerge. Typical examples include misper-
ception about the data generating process and under-parameterization, linear approxima-
tions, and hidden variables. Let the actual data generating process produce a probability
distribution over outcomes, say f(yt|ϕ), where ϕ is a parameter vector in the actual data
generating process. Then an approximating model can also be described by a probability

1More general reduced form systems include lagged endogenous variables and non-linearities. Restrict-
ing attention to models in the form of (2) is for expositional ease. The restricted perceptions approach
has been applied in fully general environments.

2Technically, the assumption is that all relevant variables are square-summable.



4

distribution over outcomes, but with an alternative parameterization: f(yt|θj). One can
index different approximating models by the parameterization θj.

The rational expectations hypothesis equates the approximating, or subjective model,
with the true model: f(yt|ϕ) = f(yt|θj). Theoretically, there are things to like about
rational expectations. There is model consistency in agents’ expectations by equating
outcomes with subjective beliefs. A well-specified learning process could lead the agents’
approximating model to converge to the rational expectations equilibrium. The stability of
rational expectations equilibria is the subject of Evans and Honkapohja (2001). However,
the assumption is strong, and it may not be reasonable to expect alignment between
subjective beliefs and actual outcomes in many settings. The learning models described
in this paper preserve many of the salient features of rational expectations by imposing a
set of moment conditions on the approximating model so that, at least for long periods,
the agent within the model would be unable to detect their misspecification. The case for
these moment conditions, and their equilibrium implications, is the focus of the present
article.

Sargent (1993) highlighted the dilemma faced by research into bounded rationality. On
the one hand, rational expectations are an a priori strong and unreasonable assumption.
On the other hand, the model disciplines rational expectations, and departing from it may
land one in a “wilderness of bounded rationality.” Evans and Honkapohja (2001) advocate
for disciplining bounded rationality via the cognitive consistency principle, which holds
that one should model agents’ forecasting behavior as if they were a good econometrician.
Applied econometricians specify, estimate, and revise econometric models. Thus, the early
literature on adaptive learning assumed that agents forecast based on linear econometric
models that nest rational expectations. The learning process occurs as agents revise their
coefficient estimates by least squares as the economy generates new data over time. In a
wide class of models, least-squares learning converges to rational expectations.

However, it was White (1994) who opened his classic econometrics book by observing
that all models are misspecified. Econometricians often face degrees of freedom problems
that force them to specify parsimonious models. The actual data-generating process
may be non-linear, but econometricians typically estimate linear models. A wide variety
of shocks impact the economy, and only a subset of those exogenous variables may be
observable by the econometrician.
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2.1 An example environment

The environment is a mean-variance linear asset pricing model similar to De Long, Shleifer,
Summers, and Waldmann (1990) as developed in Branch and Evans (2011a). There is
a continuum of agents born each time t, indexed by ωt ∈ Ω. Each agent lives for two
periods, and discounts at the rate 0 < β < 1. The number nt of young agents is iid with
En−1

t = 1. Each agent receives an endowment of y when young and consumes only when
old. The endowment is non-storable, but agents save using one of two assets: a riskless
storage technology with gross return R = β−1 > 1 payable when old; a risky asset, in the
form of a Lucas tree, which is in fixed outside supply s0, with claims to the tree traded
competitively at a price pt. An agent of type ω holds sdt shares in the risky asset. The
risky asset pays a stochastic dividend qt+1. Because the population of young agents is
random, the per-capita supply of the asset zt = s0/nt is also random. Finally, young
agents also face risk in the form of an idiosyncratic asset float shock ft(ω) that randomly
redistributes holdings of the asset among old agents. The asset float shock proxies for
idiosyncratic variations in asset float because of, for instance, lock-up expirations. The
focus here is on a small noise limit.

2.1.1 Temporary equilibrium

Preferences are of the CARA form

U (ct+1) = − exp {−act+1}

with a > 0 is the coefficient of absolute risk aversion. Agents assume a normal distribution
for pt+1 + qt+1, which leads to the household portfolio decision for young agent ω in the
form of a mean-variance optimization problem:

max
sdt

− exp
{
−aÊtct+1 +

(
a2/2

)
Var∗t ct+1

)
subject to

ct+1 = (y − ptsdt(ω)) β
−1 + ft(ω)sdt(ω) (pt+1 + qt+1)

Here, Êt denotes the subjective conditional expectation and Var∗t the subjective condi-
tional variance. Taking conditional subjective expectations leads to the first-order condi-
tion

−β−1pt + ft(ω)Êt (pt+1 + qt+1)− aσ2sdt = 0
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Here we assume that subjective conditional variance expectations are homogeneous and,
without a loss of generality, we take σ2 to be exogenous and time-invariant.3

Market equilibrium requires that s0 =
∫
sdt(ω)dω. Integrating the first-order condition

across agents leads to

aσ2s0
nt

=

∫
ft(ω)Ê

ω
t (pt+1 + qt+1)dω − β−1pt

Now, we focus on the small noise limit ft(ω) → 1, so that the temporary equilibrium4

asset-pricing condition becomes

pt = βÊt (pt+1 + qt+1)− aσ2βst

or, equivalently,
pt = βÊt (pt+1 + qt+1) + γst (2)

where Ê(x) =
∫
Eω(x)dω is the aggregate (linear) subjective expectations operator and

st is the stochastic share supply s0/nt. Finally, we assume that the share supply follows
a stationary AR(1) process

st = ρst−1 + εt (3)

Equations (2)-(3) provide the (temporary) equilibrium value for price pt given the
aggregate expectations operator Êt. The structural model takes the same form as the
expectational difference equation in (2) with z′t =

(
Êtqt+1, st

)
. The next section describes

a variety of behavioral assumptions that lead to misspecification and restricted perceptions
equilibria.

3. Rational expectations equilibrium and E-stability

Let 0 < β < 1 in (2). In this case, there is a unique rational expectations equilibrium of
the form

yt = ā+ b̄′zt

3Branch and Evans (2011a) focuses on an environment where the endogeneity of σ2 plays a central
role in generating asset price bubbles and crashes.

4A temporary equilibrium is a time t market equilibrium in which agents solve their optimization
problem taking as given own subjective expectations over payoff-relevant variables whose determination
is treated as exogenous by each of the agents.
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This is a minimal state variable solution as yt is an exact linear function of the state
variables in (2). One can find the rational expectations equilibrium values

(
ā, b̄

)
by the

method of undetermined coefficients. From the linear form,

Etyt+1 = ā+ b̄′ρzt

in which case, the true data-generating process is

yt = α + βā+
[
βb̄′ρ+ γ′

]
zt

Equating the linear form and the true data-generating process leads to

ā =
α

1− β

b̄ = (I − βρ)−1 γ

Evans and Honkapohja (2001) develop the E-stability principle and demonstrate how
an “E-stability condition” can determine whether a rational expectations equilibrium is
learnable under a reasonable learning rule, e.g., least-squares learning. The approach is
similar to the method of undetermined coefficients. Assume agents’ beliefs come from an
approximating model, called a perceived law of motion, of the form

yt = a+ b′zt ⇒ Êtyt+1 = a+ b′ρzt (4)

The perceived law of motion is a linear forecasting rule of the same form as the unique
rational expectations equilibrium but for an arbitrary parameterization (a, b). Given those
expectations, plugging into (2) leads to the actual law of motion implied by the perceived
law of motion:

yt = α + βa+ [βb′ρ+ γ′] zt (5)

Equating the perceived and actual laws of motion leads to the same parameter values
(ā, b̄) uncovered by the method of undetermined coefficients.

The E-stability approach, though, notes that (5) can be rewritten

yt = T (a, b)′Xt

where X ′
t = (1, zt) and

T (a, b)′ = [α + βa, βb′ρ+ γ′]
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A rational expectations equilibrium is a fixed point to the “T-map”:
(
ā, b̄

)
= T

(
ā, b̄

)
. It

turns out, though, that for a wide range of learning algorithms, convergence of real-time
learning – in the sense that

(
āt, b̄t

)
→

(
ā, b̄

)
– is governed by the local asymptotic stability

of the E-stability o.d.e.:
d (a, b)

dτ
= T (a, b)− (a, b) (6)

A rational expectations equilibrium is expectationally stable (E-stable) provided that
(ā, b̄) is a locally stable resting point to (6). Notice that the rational expectations equi-
librium is a resting point of the o.d.e. The T-map, intuitively, tells us what coefficients
an econometrician would recover with a long data history if (a, b) remained constant.
Thus, the E-stability o.d.e. says that a good learning algorithm will adjust the approx-
imating model whenever the actual coefficients differ from the perceived coefficients. If
that adjustment moves towards the rational expectations equilibrium, it is E-stable. The
minimal state variable solution is E-stable given that DTa(ā, b̄) = β < 1.

Suppose instead that |β| > 1. The model is now indeterminate with a continuum of
possible rational expectations equilibria. It turns out that the full class of solutions is of
the form

yt = ā+ b̄′zt + c̄yt−1 + d̄ηt

where ηt is an extrinsic random variable satisfying Et−1ηt = 0, i.e. a sunspot variable.
Sunspot equilibria give agents’ beliefs an independent role in the economy as they allow
dependence on a self-fulfilling sunspot variable. In many cases, however, sunspot variables
are not stable under learning.

To see this point, consider a simplified version of (2) where α = 0, γ = 0. Then,

yt = βÊtyt+1

Suppose that the agents’ approximating model is

yt = cyt−1 ⇒ Êtyt+1 = cÊtyt = c2yt−1

Then the actual law of motion is

yt = βc2yt−1 = T (c)yt−1

The rational expectations equilibrium values for c are either 0 or 1/β. Take the latter,
and notice that T ′(c̄) = T ′(β−1) = 2ββ−1 = 2 > 1. So sunspot solutions are not E-stable.
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The remainder of the paper examines the implications of instances where the approx-
imating model does not nest the actual model. The focus is on reasonable restrictions
on the approximating models that lead to a restricted perceptions equilibrium. Novel
economic phenomena will arise, including the existence of E-stable sunspot equilibria.

4. Restricted perceptions equilibrium

A restricted perceptions equilibrium (RPE) allows for misspecification in the approximat-
ing models entertained by agents. An RPE maintains cross-equation restrictions like the
rational expectations hypothesis by requiring that the approximating model is the opti-
mal linear projection within its class. This section describes a few common examples of
misspecification and restricted perceptions equilibria. The first example is the case where
the approximating models are under-parameterized. In the second example, the actual
model is non-linear, but agents forecast with a linear model. The third example assumes
that the actual model contains hidden state variables unobserved by agents.

4.1 Under-parameterization

As a first example, consider the case of (2) with bivariate exogenous shocks:

yt = βÊtyt+1 + γ1z1t + γ2z2t

and
zjt = ρjzjt−1 + εjt, j = 1, 2

The innovations εjt are mean-zero with variances σ2
j and Eε1tε2t = σ12.

In a complete information environment, the rational expectations equilibrium is

yt =
γ1

1− βρ1
z1t +

γ2
1− βρ2

z2t

The effects of the shocks have a direct effect parameterized by γ1. The shocks also have an
indirect effect that arises through the self-referential features of the model: yt depends on
expectations about its future values. The rational expectations equilibrium s the expected
present value of the direct effects.

Branch and Evans (2006) note that in some situations, the cognitive consistency prin-
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ciple would lead agents to specify parsimonious forecasting models. In many environ-
ments, econometricians face a degree of freedom limitation that leads them to pare down
the number of lags or exogenous variables. Forecasters often find, in environments with
structural change of unknown form, that simple, parsimonious models perform better. In
this simple univariate example, complexity is not an issue, but it provides an analytical
example of how under-parameterization can alter the equilibrium dynamics.

Suppose that agents have a perceived law of motion (approximating model) that con-
ditions only on z1t:

yt = b1z1t + ϵt ⇒ Êtyt+1 = b1ρ1z1t (7)

where ϵt is a perceived noise variable. The actual law of motion is, then,

yt = [βb1ρ1 + γ1] z1t + γ2z2t (8)

The method of undetermined coefficients does not help pin down the value of b1. Because
z2t is serially correlated and possibly correlated with z1t the rational expectations value of
b1 = γ1/(1−βρ1) will not give the best forecast of yt, in a least-squares sense. Instead, we
need to compute b1 from the linear projection of yt onto the restricted space of variables,
z1.

Beliefs in a restricted perceptions equilibrium will satisfy the least-squares orthogo-
nality condition that delivers the approximating model as the best linear model in its
restricted class. In the current example,

Ez1t (yt − b1z1t) = 0

Solving for b1:
b1 =

Eytz1t
Ez21t

Alternatively, after plugging in the actual law of motion (8):

b1 = [βb1ρ1 + γ1] + γ2
Ez1tz2t
Ez21t

≡ T (b1)

A few comments:

• Notice that the least-squares projection of yt on z1t implies that the coefficient b1
consists of two terms. The first is the actual coefficient in the data generating
process (8). The second term is the omitted variable bias that emerges when z1t, z2t
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are correlated.

• The least-squares orthogonality condition implies that b1 = T (b1), an expression
similar to the previous section. However, there is no one-to-one mapping from the
PLM to the ALM; since the approximating model omits the z2t term, it is under-
parameterized. Instead, the T-map here is a “projected T-map.” The interpretation
of this T-map is that if agents held a perceived law of motion of the form (7),
with fixed b1, then with a sufficiently long sample, the regression of yt on z1t would
estimate a coefficient T (b1).

Thus, a restricted perceptions equilibrium b∗1 is a fixed point to the T-map:

b∗1 = T (b∗1)

Simple calculations show that

b∗1 =
γ1

1− βρ1
+

γ2
1− βρ1

σ12
σ2
1

1− ρ21
1− ρ1ρ2

The RPE value for the belief parameter b∗1 equals its REE value plus a term that captures
the omitted variable bias. If the omitted variable is uncorrelated with the regressor, i.e.,
σ12 = 0, then there is no bias. The bias is increasing in the size of the omitted variable’s
direct effect, γ2, the strength of the correlation (relative to the variance of z1t), and the
persistence of the omitted variable ρ2.

Branch and Evans (2006) asked whether it is possible for under-parameterization/parsimony
will lead to an equilibrium with heterogeneous expectations. The approach was to give
agents a choice between all possible under-parameterized forecasting models. Agents
could, for instance, select models based on their mean-squared forecast errors. Defining
a misspecification equilibrium as a restricted perceptions equilibrium where agents only
choose the best-performing models, heterogeneity will arise when each model delivers
equivalent mean-squared errors. Branch and Evans (2006) call this intrinsic heterogene-
ity.

Let n denote the fraction of agents who forecast with (7). Then 1 − n agents have
expectations Ê2yt+1 = b2ρ2z2t. The actual law of motion is

yt = [nβb1ρ1 + γ1] z1t + [(1− n)βb2ρ2 + γ2] z2t

The indirect effect depends on the population distribution across the two models, i.e., n.
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The idea of a misspecification equilibrium is that n, b1, b2 are all equilibrium objects. So,
there are now a pair of orthogonality conditions for j = 1, 2:

Ezjt (yt − bjzjt) = 0

and a selection rule:

n =


1 if F (1) > 0

0 if F (0) < 0

n̂ ∈ (0, 1) if F (n̂) = 0

where
F (n) = E(yt − b2z2t)

2 − E(yt − b1z1t)
2

is the relative forecast accuracy of the z1 model vis a vis the z2 model.

It turns out, that when 0 < β < 1, then in equilibrium n = 0, n = 1, or both.5.
When there is negative feedback in the model with −1 < β < 0, there is the possibility
of intrinsic heterogeneity. This case requires that the indirect effect is strong enough –
i.e., sufficiently negative β – and that the two exogenous variables are correlated and
sufficiently volatile.

4.2 Linear beliefs in a non-linear model

Applied forecasting models are typically linear. Macroeconomic models, particularly their
DSGE variants, are solved as log-linear approximations around a steady state. However,
most macroeconomic environments produce a non-linear relationship between equilibrium
outcomes and state variables, including expectations.

Another restricted perceptions approach assumes that the economy’s agents form
expectations via a linear forecasting model and that the equilibrium law of motion is
non-linear (c.f. Branch and McGough (2005); Hommes, Sorger, and Wagener (2013)).
Consider a non-linear version of (2):

yt = G(yet+1) + vt (9)
5More concretely, in the case of multiple equilibria, there is a knife-edge equilibrium with 0 < n < 1,

but this equilibrium is unstable under learning.
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where y is univariate, G is continuous and real-valued, and vt is white noise with compact
support. The earlier OLG example, with a more general preference structure, could lead
to a pricing relationship like (9). The increasing returns model of Evans and Honkapohja
(2001) is another example environment. Implicitly assumed in (9) is that agents hold point
expectations, i.e. ÊtG(yt+1) = G(yet+1). Among other technical assumptions, Branch and
McGough (2005) impose that the function G is symmetric about a steady-state α.

Solving stochastic non-linear rational expectations models like (9) are complicated.
Most researchers approximate the solution by solving for a solution to a first or second-
order expansion around α. The restricted perceptions approach, on the other hand, as-
sumes that the data generating process (9) is non-linear, but agents hold a linear perceived
law of motion:

yt = a+ b (yt−1 − a) ⇒ yet+1 = a+ b2 (yt−1 − a) (10)

A restricted perceptions equilibrium determines the coefficients a, b as the optimal least-
squares projection of yt onto the space of linear models of the form (10). In this case, the
coefficient for a will reflect the unconditional mean of y, and b will equal the unconditional
first-order autocorrelation, where the former is taken with respect to the asymptotic
distribution for yt and computing the latter is taken from the joint asymptotic distribution
over (yt, yt−1). Branch and McGough (2005) provide a general existence and uniqueness
result for symmetric G.

As an example, consider the function G(y) = F (y − α) + α, where

F (y) =

 yβ if y ≥ 0

− (−y)β else

where 0 < β < 1. The actual law of motion, then, is

yt = G
[
α + b2 (yt−1 − α)

]
+ vt (11)

Suppose that β = 1/3, α = a = 1.1, vt ∈ [−1, 1]. Branch and McGough (2005) compute
that b∗ ≈ 0.74.

Figure 1 plots the restricted perceptions equilibrium and outcomes. The solid line is
the function G plotted in phase space. The dashed line is the perceived law of motion
(10). The circles represent the outcomes from a typical 1000-period simulation. Given
linear beliefs (10) with (a, b) = (1.1, 0.74) and resulting data generating process (11), leads
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to a stochastic process with a linear trend consistent with the linear beliefs. Although the
agents mistakenly believe that the underlying process is linear, the actual non-linear pro-
cess produces realizations that self-confirm those beliefs within the restricted perceptions
equilibrium.

Figure 1: Restricted perceptions equilibrium: linear forecasting model in a non-linear
world.
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The applications section will consider restricted perceptions where linear beliefs in
a non-linear world produce novel economic phenomena near rational sunspot equilibria.
However, the restricted perceptions approach also provides a computationally and eco-
nomically intuitive method for solving non-linear stochastic models.

4.3 Hidden state variables

In part, random shocks drive macroeconomic and asset-pricing models. A model is a
simple formalization of a complex economic process disturbed by a significant number of
exogenous forces. It is unlikely that people will observe all of those shocks. What are the
consequences of hidden variables to a model?
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4.3.1 Unobservable variables and rational expectations

Now, let’s return to the linear model (2) with 0 < β < 1 and zt univariate. The unique
rational expectations equilibrium is

yt = (1− βρ)−1zt

But, using the Wold decomposition zt = (1− ρL)−1εt, and so

yt = (1− βρ)−1(1− ρL)−1εt

⇔ (1− ρL)yt = (1− βρ)−1εt

⇔ yt = ρyt−1 + (1− βρ)−1εt

So, an equivalent representation of the rational expectations equilibrium takes the form
of an AR(1).

The question asked by Marcet and Sargent (1989) is what does a rational expectations
equilibrium look like if zt is unobservable or a hidden variable to economic agents? The
answer, it turns out, depends on whether yt is contemporaneously observable.

Suppose that agents perceive the process to follow an AR(1)

yt = byt−1 + dεt

If agents observe yt contemporaneously, then

Etyt+1 = byt

and the actual law of motion becomes

yt = βbyt + γzt

or,
yt = byt−1 +

γ

1− βb
εt

So, the rational expectations equilibrium takes the usual form when yt is observable and
b = ρ.

Now suppose that yt is observed with a lag: Et−1yt+1 = b2yt−1. In this case, the
rational expectations equilibrium follows an AR(∞). To see this, note that with the
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AR(1) PLM and “t-1” timing that the actual law of motion is

yt = βb2yt−1 + γzt

or,
(1− ρL)

(
1− βb2L

)
yt = γεt

When agents cannot observe zt or contemporaneous yt and guess an AR(1) equilibrium,
the actual data-generating process is an AR(2). More generally, if agents have an AR(p)
perceived law of motion, then

Et−1yt+1 = b1 (b1yt−1 + · · ·+ bpyt−p) + b2yt−1 + · · ·+ bpyt−p+1

and the true data-generating process is an AR(p+ 1):

(1− ρL)

[
1− β

p∑
j=1

(b1bj + bj+1)L
j

]
yt = γεt

It follows that with hidden state variables and yt observed with a lag, the rational
expectations equilibrium is an AR(∞). In this case, the agents would require an infinitely
long history of yt to filter and recover the hidden shocks.

4.3.2 Unobservable variables and restricted perceptions

Of course, it is not practical to estimate the coefficients of an AR(∞) with finite data
histories. Hommes and Zhu (2014) find a restricted perceptions equilibrium with an AR(1)
forecasting equation. Following the generalization in Branch, McGough, and Zhu (2022),
this section traces the implications of an under-parameterized AR(1) perceived law of
motion.

Assume that agents hold beliefs consistent with an AR(1) perceived law of motion:

yt = byt−1 + ϵt ⇒ Êtyt+1 = b2yt−1 (12)

Then the actual law of motion is

yt = βb2yt−1 + γzt

In a restricted perceptions equilibrium, the coefficient b will satisfy the least-squares or-
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thogonality condition:
Eyt−1 (yt − byt−1) = 0

Or,
b =

Eytyt−1

Ey2t−1

is the first-order autocorrelation coefficient. Notice that because the model is self-referential,
the right-hand side depends on b.

Straightforward computations show that the T-map is

b→ βb2 + ρ

1 + βb2ρ

Hommes and Zhu (2014) and Branch, McGough, and Zhu (2022) prove the existence of
an RPE b̂ that is a fixed point to the T-map. This equilibrium value for b̂ is a complicated
expression of β and ρ.

Interestingly, the restricted perceptions equilibrium identified here may not be unique,
and other equilibria can depend on sunspots. The applications portion of this paper
studies the complete set of solutions.

5. Applications

This section turns to a few novel applications that arise from the restricted perceptions ap-
proach. These are non-Ricardian beliefs, sunspot equilibria that are stable under learning,
and random-walk beliefs that lead to asset price bubbles and inflation scares.

5.1 (Non-)Ricardian beliefs

Several adaptive learning papers develop non-Ricardian beliefs in New Keynesian type
models (c.f. Evans, Honkapohja, and Mitra (2009); Eusepi and Preston (2018); Woodford
(2013)). A boundedly rational consumption function combines the Euler equations with
a household intertemporal budget constraint without assuming the household correctly
understands the government’s budget constraint and debt solvency. Instead, the house-
hold also must forecast the government’s debt and primary surplus evolution. In these
environments, the government’s level of debt and surplus are state variables. Branch and
Gasteiger (2022) study the consequences of under-parameterization in forecasting in this
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environment without directly imposing Ricardian beliefs. The under-parameterization
here reflects that most applied analyses of the effects of fiscal policy typically only in-
clude a single fiscal variable. Here, though, it is a convenient formalization for how
non-Ricardian beliefs could emerge endogenously.

Woodford (2013) introduces a special case of a purely real New Keynesian model
without imposing Ricardian beliefs. The key equations are:

bt+1 = β−1 (bt − st) (13)
yt = vt + (1− β) bt (14)
vt = (1− β) (bt+1 − bt) + Êtvt+1 (15)
st = ϕbbt + zt (16)

Equation (13) is the government’s flow budget constraint, and it relates the stock of one-
period government debt issued at time t, bt+1, to the difference between the beginning
of period debt and the primary surplus st. The second equation (14) is the consumption
function after imposing the goods market clearing condition that ct = yt. The variable vt is
a continuation value that reflects the annuitized value of future tax liabilities and returns
on debt holdings that enter the household consumption function. So aggregate output
depends on this forward-looking variable as well as the existing stock of debt. Equation
(15) provides the recursion that determines the continuation value vt. The question of
Ricardian equivalence is whether the household’s expectations Êtvt+1 correctly anticipate
future surpluses and debt issuances. If so, then yt will not depend on government debt
bt, and Ricardian equivalence holds. The final equation is the fiscal rule with the policy
coefficient 1− β < ϕb < 1 and white noise policy shocks zt.

Since bt+1, depending on bt, st, is the relevant state variable, the full information
equilibrium will depend on bt+1 if it is observable or separately on bt, st. Suppose that
agents do not know bt+1 and the flow government budget constraint. Moreover, the agents
prefer parsimonious models and include a single fiscal variable in their forecast equation.
Then there are two potential forecasting models:

vt = ψsst−1 + ϵt (17)
vt = ψbbt−1 + ϵt (18)

The first model (17) depends only on the flow budget surplus, while the model (18) de-
pends on the previous period’s government debt level. Loosely speaking, n parameterizes
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the extent of non-Ricardian beliefs. A restricted perceptions equilibrium jointly pins down
the belief parameters in (17)-(18) and the aggregate variables (13)-(16).

Rather than imposing that all agents forecast with the same model, let

Êtvt+1 = nψsst + (1− n)ψbbt

where n is the fraction of households that forecast with the surplus model (17). In a
restricted perceptions equilibrium, there are a pair of least-squares orthogonality condi-
tions:

Est−1 [vt − ψsst−1] = 0

Ebt−1

[
vt − ψbbt−1

]
= 0

Branch and Gasteiger (2022) prove the existence, given n, of a unique RPE.

Consider the special case of n = 0; all households forecast with the debt model. Then
it turns out the RPE is

yt = −
(
β−1 − 1

)
zt

ψb = −
(
β−1 − 1

)
(1− ϕb)

Notice that aggregate output does not depend on the debt stock bt. It does depend on
the innovation to the primary surplus zt, but since β ≈ 1, the effect is negligible. Branch
and Gasteiger (2022) call this a form of weak Ricardian equivalence.

Now let n = 1; all households forecast with the surplus model. Then Woodford (2013)
finds that

yt =

[
(1− β) (1 + β − ϕb)

β (1 + β) + ϕb

]
bt −

[
β (1− β−1)

β (1 + β) + ϕb

]
zt

ϕs = −β
−1 (1− β) (1− β2 − ϕb)

β (1 + β) + ϕb

< β−1 − 1

Generalizing, Branch and Gasteiger (2022) show that the unique RPE, given n is of
the form

yt = ξ1(n)bt + ξ2(n)zt

with
ξ1(n) ̸= 0 ⇔ n > 0
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So Ricardian equivalence is fragile. Only if every agent forecasts with the stock of debt will
they correctly understand the consequences of fiscal policy. For any n > 0 – including
n → 0 – then neither type of agent holds Ricardian beliefs. In this sense, Ricardian
equivalence is fragile and occurs in a highly restrictive self-confirming equilibrium.

5.2 Sunspots

Section 3 showed how belief-driven fluctuations could arise through indeterminacy and
sunspot equilibria. There are two drawbacks to rational sunspots as a model of self-
confirming fluctuations: first, often, the sunspot equilibria are unstable under learning;
second, the indeterminacy regions in the DSGE model often coincide with empirically un-
realistic parameterizations. The restricted perceptions approach, however, can overcome
both limitations of rational sunspots.

5.2.1 Statistical sunspots

Branch, McGough, and Zhu (2022) show that with unobservable variables, the restricted
perceptions approach can generate sunspot equilibria in determinate models that are
stable under learning.

The approach is to extend (12) to include dependence on an extrinsic shock:

yt = byt−1 + dξt ⇔ Êtyt+1 = b2yt−1 + d (b+ ϕ) ξt (19)

where
ξt = ϕξt−1 + vt

is an extrinsic noise term uncorrelated with the hidden variable zt. To ease exposition,
assume that εt ∼ N (0, σ2

ε) , vt ∼ N (0, σ2
v) , σv,ε = 0. If d ̸= 0, then the economy depends

on this extrinsic noise. The question is whether ξt can matter in a self-confirming way,
and we can interpret it as a sunspot. Branch, McGough, and Zhu (2022) study how ξt

can matter in a restricted perceptions equilibrium.

The least-squares orthogonality condition is

E (yt − byt−1 − dξt) (yt−1, ξt)
′ = 0
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The sunspot will matter for yt when there is a non-zero correlation between yt and ξt:

d = (1− bϕ)
Eytξt
Eξ2t

But, yt depends in turn on (b, d). For this reason, Branch, McGough, and Zhu (2022)
call ξt a statistical sunspot; its presence arises because of a self-confirming statistical
correlation.

Proceeding as in Section 4.3.2, the d−component of the T-map is

d→ dβ (b+ ϕ) (1− bϕ)

1− βb2ϕ

There are two fixed points to the Td component of the T-map: d∗ = 0 and

b∗ =
1− βϕ

β (1− ϕ2)

When d∗ = 0, the PLM (19) is identical to (12) and the earlier RPE results. When
d∗ ̸= 0, then the RPE value can be found as a solution to the Tb component (see Branch,
McGough, and Zhu (2022) for details):

(d∗)2 = ξ(b∗, β, ρ, ϕ)

Branch, McGough, and Zhu (2022) show that for fixed ϕ – the serial correlation of the
sunspot variable – that

1. There exists a unique RPE with (b, d) = (b̂, 0), and b̂ is the equilibrium identified
by Hommes and Zhu (2014).

2. There exist threshold values β̃(ϕ), ρ̃(β, ϕ) so that sunspot RPE (b, d) = (b∗,±d∗)
exist ⇔ β̃ < β < 1 and ρ̃ < ρ < 1.

3. When sunspot RPE exists, the sunspot RPE is E-stable, while the fundamentals
RPE with d = 0 is E-unstable.

Figure 2 illustrates the results. The solid lines correspond to the fixed points of the
two T-map components. The vector field indicates the E-stability dynamics. An RPE
occurs where the contours intersect. There are three RPE. There is the fundamental
RPE with d = 0. There are also two symmetric sunspot RPE. Notice, in particular,
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Figure 2: Statistical sunspots.

that the sunspot RPE is E-stable. Thus, with hidden variables in an environment with a
unique rational expectations equilibrium, we expect the economy to exhibit dependence
on self-confirming sunspots.

5.2.2 Near rational sunspots

Evans and McGough (2020b) find existence of E-stable near rational sunspot equilibria
in non-linear models where the steady-state is locally indeterminate. Their approach, like
section 4.2, assumes that agents forecast with a linear model while the data-generating
process is non-linear.

Suppose, as in Evans and McGough (2020b) that

yt = F
(
yet+1

)
with

F (y) = θy + µy3

Agents have a linear perceived law of motion:

yt = a+ dηt
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where ηt is a serially correlated process

ηt = ληt−1 + et

The coefficient λ satisfies a “resonant frequency condition” so that a sunspot equilibrium
in the linearized version corresponds to the sunspot equilibrium found in Section 3

Now in a restricted perceptions equilibrium, the coefficients (a, d) are found from the
least-squares projection of the actual non-linear law of motion onto the space spanned by
(1, ηt). The main results in Evans and McGough (2020b) can be illustrated in their simple
cubic example with θ = −5 and µ = 2. The θ < 0 is equivalent to the negative feedback
case in (2). Figure 3 plots the existence and E-stability of near rational sunspots.

Figure 3: Near rational sunspot equilibria.

The outer circle and vertical line correspond to fixed points to the Ta component of the
T-map. The inner circle and horizontal axis are the fixed points to Td. The intersection
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of the contours are RPE. Intersections with d ̸= 0 are near rational sunspot equilibria. In
the figure, the steady state is saddle-path stable. However, it is the near-rational sunspots
that are stable under learning.

5.3 Random-walk beliefs

In the presence of hidden variables, the restricted perceptions approach finds equilibria
that are more serially correlated than under rational expectations. Moreover, these serially
correlated and volatile equilibria are stable under learning. In other settings, restricted
perceptions equilibria can exist that are self-confirming but not stable under learning.
Nonetheless, learning dynamics can still be drawn toward the RPE and exert influence
over dynamics for a finite period. In linear self-referential models, these RPE take the
form of random-walk beliefs.

Continuing with the general model (2), suppose that zt is univariate white noise and
that agents perceive that y follows a random walk without drift:

yt = yt−1 + ϵt ⇒ Êtyt+1 = yt−1

The actual law of motion, then, is

yt = α + βyt−1 + γzt

Or, in terms of MA(∞) processes, we have

PLM: yt = g(L)ϵt (20)
ALM: yt = µ+ f(L)zt (21)

where g(L) = (1− L)−1 , µ = α/(1− β), f(L) = γ (1− βL)−1.

In (21), the unconditional mean of yt, is α/(1− β), the same value as in the rational
expectations equilibrium. However, when zt is iid (as in this example), yt is not serially
correlated. Here the random-walk beliefs induce serial correlation that would not exist
under rational expectations.

For large values of 0 < β < 1, the serial correlation induced by random-walk beliefs
is nearly self-fulfilling. In fact, as β → 1, the moving average structure is identical under
the perceived law of motion (20) and the actual law of motion (21). In a similar setting,
Sargent (1999) notes that random-walk beliefs can track constants well. In the rational
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expectations equilibrium, yt equals µ plus iid innovations. The perceived law of motion
(20) does not have a constant and uses higher-order moments to track low-frequency
movements in the unconditional mean. This latter point provides key intuition for why
random-walk beliefs, in models with strong expectational feedback, can be expected to
arise under learning.

Section 3 showed that the iid rational expectations equilibrium is E-stable. It is
natural to ask, what kind of real-time learning dynamic could generate nearly self-fulfilling
random-walk beliefs? The answer is a variant of recursive least-squares called “constant
gain learning.”

Suppose that agents have an AR(1) perceived law of motion:

yt = a+ byt−1 + ϵt ⇒ Êtyt+1 = a(1 + b) + b2yt−1 (22)

Notice that this PLM nests both the rational expectations equilibrium and random-walk
beliefs. Let θt = (at, bt)

′ , xt = (1, yt−1)
′ and Rt be the sample estimate of the unconditional

covariance matrix Extx′t. Then recursive estimates of at, bt are updated via the stochastic
recursive algorithm:

θt = θt−1 + ϕtR
−1
t xt

(
yt − θ′t−1xt

)
Rt = Rt−1 + ϕt (xtx

′
t −Rt−1)

At t = 0, agents have priors over a0, b0. They form expectations via (22), shocks occur,
and new data are determined by (2). Then θt, Rt are updated, and the process repeats.
The variable ϕt is called a gain sequence. Recursive least-squares arises when ϕt = 1/t.
In this case, the learning estimates place equal weight on all data points. When ϕt = ϕ,
it is called constant gain learning. With a constant gain, the learning algorithm places
geometrically declining weights on past data. Constant gain learning is advisable when
agents are concerned about structural change of an unknown form.

The E-stability principle says that the recursive least-squares estimates θt → θ∗, the
REE values for (a, b), with probability 1 as t→ ∞. Under constant gain learning, however,
the estimates θt do not settle down to the REE values. Because of the time-invariant gain,
it turns out that θt can converge in distribution: for large t and as ϕ→ 0, θt ∼ N(µ, ϕV ).
So constant gain learning beliefs, for large samples, are distributed around the rational
expectations equilibrium with a variance proportional to the constant gain ϕ.

Even more insightful, is a result in Evans and Honkapohja (2001), that as ϕ→ 0 and
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t large, the random learning path θ(τ) converges weakly to the solution θ̃(τ, θ0) – for any
θ0 in a neighborhood of the rational expectations equilibrium – to the mean-dynamics:

θ̇ = R−1M(θ) (T (θ)− θ)

Ṙ = M(θ)−R

and where τ maps the discrete time sequence for θt into a continuous time path θ(τ).
The mean-dynamics o.d.e. are found via a continuous-time interpolation of the recursive
least-squares algorithm and appealing to a law of large numbers. The result tells us that
the solution to the mean-dynamics o.d.e. delivers the expected path for the real-time
learning estimates θt following a sequence of shocks that drive learning to θ0. Those
sequences of shocks that “initialize” the mean dynamics are called escape dynamics; see
Williams (2019).

A numerical example demonstrates the possibility for learning to be drawn toward
random-walk beliefs. Set β = 0.95, α = 0.1, σz = 0.1. For θ0 ≈ (2, 0), E-stability tells
us that learning will converge to the rational expectations equilibrium θ∗ = (2, 0). It is
during the transition path that random-walk beliefs can arise. Suppose that θ0 = (2, 0.5).
Figure 4 illustrates the mean dynamic paths for a(τ), b(τ). Notice that eventually, learning
converges to the rational expectations equilibrium. The transition path, however, features
(a, b) ≈ (0, 1) for a finite stretch of time: these are random-walk beliefs as in (20).
Eventually, the E-stability of the rational expectations equilibrium restores beliefs to the
rational expectations equilibrium values.

What drives beliefs toward random-walk beliefs? It is the same intuition described
above that random-walk beliefs can introduce self-fulfilling serial correlation and approx-
imate well low-frequency drift. Imagine a positive sequence of shocks to zt. The agents’
econometric model detects the serial correlation when regressing yt on a constant and
a lag. The self-referential nature of the model (2) then induces more serial correlation,
which the agents’ model again detects. The random-walk beliefs are nearly self-confirming.
Eventually, a new sequence of shocks counters these beliefs, and agents learn the actual
process again. This type of sequence of shocks – Sargent calls it the “most likely unlikely”
sequence – triggers an escape from the rational expectations equilibrium. Then the mean
dynamics show a temporary form of restricted perceptions.

Random-walk beliefs that arise endogenously have novel applications that arise by
creating additional persistence and volatility:

1. Branch and Evans (2011a) incorporated adaptive learning into a mean-variance
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Figure 4: Mean dynamics: random walk beliefs
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asset-pricing that takes the form of (2). The shock zt is a shock to share supply,
i.e., asset float. In that framework, the right sequence of shocks to share supply –
say because of lock-up expirations – led to a constant gain learning process drawn
towards random-walk beliefs. At that moment, agents mistakenly perceive all stock
price innovations as permanent, increasing their demand and increasing prices fur-
ther. The result is self-fulfilling bubbles or crashes in stock prices.

2. Branch and Evans (2017) studied constant gain learning in various New Keynesian
monetary models with non-zero long-run inflation targets. If agents imperfectly
understand the central bank’s inflation target, then to forecast inflation, the agents
need estimates of both the conditional mean and persistence of inflation. That
gives rise to the possibility of endogenous random-walk learning dynamics. The key
result in that paper is that higher long-run inflation targets increase the likelihood
of random-walk beliefs. Thus, increasing the target can trigger random-walk beliefs
and an inflation scare. Once at the higher target, the emergence of random-walk
beliefs can lead to an inflation scare or even a collapse to the zero lower bound.
Lower values for the inflation target produce stable learning dynamics.
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6. Literature Review and Conclusion

Early contributions to the restricted perceptions approach include Marcet and Sargent
(1989), Evans, Honkapohja, and Sargent (1993), and Marcet and Sargent (1995). The
papers Marcet and Sargent (1989, 1995) explore hidden variables and their implications
for expectations. Evans, Honkapohja, and Sargent (1993) assume agents mistakenly fit
an AR(1) regression model to data in an economy with complex, deterministic dynamics.

Evans and Honkapohja (2001) offered the first example of an under-forecasting model
in a cobweb model and a forward-looking model like (2) that includes a lag. The E-
stability properties of the latter are different with restricted perceptions than with rational
expectations. Branch and Evans (2006) extended the under-parameterization framework
to allow the agents to select their model optimally in a random-utility setting, generalizing
Brock and Hommes (1997) to a stochastic environment. The key result of that paper is
that heterogeneous expectations can arise endogenously. Multiple equilibria can arise
in a monetary model, Branch and Evans (2007) similar to the Ricardian beliefs example
discussed here, that generate time-varying inflation volatility. Similarly, Branch and Evans
(2009) find that endogenous choice of under-parameterized models generates empirically
realistic shifting means and variances in stock returns. Other approaches to predictor
selection appear in Markiewicz (2012) and Cho and Kasa (2015).

The restricted perceptions approach sometimes goes under alternative names. For
instance, the consistent expectations equilibrium of Hommes and Sorger (1997) asks fore-
casts to be consistent with a finite number of sample autocorrelations. Hommes and Zhu
(2014) describe a first-order consistent expectations equilibrium that they call a behavioral
learning equilibrium. Finally, Cho and Kasa (2015) have an under-parameterization ex-
ample that they label a self-confirming equilibrium. The restricted perceptions approach
is encompassing, and these alternative definitions are refinements.

Recent work incorporates restricted perceptions into empirically realistic business cy-
cle and monetary models. The key distinction of these classes of models is the assump-
tion of infinitely-lived agents that solve complicated intertemporal optimization problems.
Evans, Evans, and McGough (2022) present a general existence result for restricted per-
ceptions equilibria when they make specific bounded optimality assumptions. Branch and
McGough (2011) find that restricted perceptions and heterogeneous beliefs can amplify
volatility in a real business cycle model. Branch and Evans (2011b) find hysteresis effects
in a New Keynesian model with agent choice over under-parameterized models.

Besides the non-linear models referenced earlier, other papers have developed the re-
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stricted perceptions approach in non-linear models. Evans and McGough (2020a) study
learning with linear under-parameterized forecasts in a non-linear cobweb model. Simi-
larly, Shin (2020) develops an asset-pricing model with costly market participation and
under-parameterized forecasting equations.

The next frontier in the restricted perceptions approach is incorporating it into em-
pirically realistic DSGE models. Branch and Gasteiger (2022) is a recent example of how
restricted perceptions can yield new empirical insights in an estimated New Keynesian
model. The critical challenge in DSGE models is how to discipline both bounded ratio-
nalities in expectations and bounded optimality in decision-making. The shadow-price
learning approach in Evans and McGough (2014) is very much in a restricted perceptions
spirit. In shadow-price learning, the agents satisfy the necessary conditions of their dy-
namic programming problem. The unknown object for agents, though, is the continuation
value that results from current-decision making, i.e., the shadow price. It is natural for
the decision-maker to forecast shadow prices with linear approximating models. Shadow
price learning is a promising approach to building restricted perceptions into the current
set of state-of-the-art models.
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